



June 17, 2014

# 2014 Stiles Farm Field Day

©Texas A&M Soil and Crop Sciences

The Department of Soil and Crop Sciences 🦮 Texas A&M AgriLife Research & Extension

# **Table of Contents**

Managing Fertilizers to Protect Groundwater Quality..... Kristine Uhlman, Extension Program Specialist – Water Resource, Mark L. McFarland, Professor and State Soil Fertility Specialist, Diane E. Boellstorff, Assistant Professor and Extension Water Resources Specialist, Texas A&M AgriLife Extension Service, Dept. of Soil and Crop Sciences, College Station, Texas

9

# Evaluation of Cotton Yield, Quality, and Plant Growth Response to Soil-Applied Potassium

Michael C. Spiegelhauer, Graduate Extension Assistant; Gaylon D. Morgan, Professor and State Cotton Specialist; Mark L. McFarland, Professor and Soil Fertility Specialist; Dennis L. Coker, Extension Program Specialist; Dale A. Mott, Extension Program Specialist; and Tony L. Provin, Professor and Extension Soil Testing Laboratory Director Texas A&M AgriLife Extension Service Department of Soil and Crop Sciences College Station, TX

> Mike Stewart International Plant Nutrition Institute Southern and Central Great Plains Director

#### ABSTRACT

The frequency and severity of potassium (K) deficiency symptoms on the highly productive clay soils in the Central Blacklands and Gulf Coast regions of Texas have increased in recent years. While continuous dry conditions have undoubtedly contributed to this consistent occurrence of deficient K symptoms, the frequency and widespread geographic nature of the K deficiencies in multiple row crops, specifically cotton, is a major concern to producers and scientists. Two locations in the Central Blacklands and Gulf Coast regions were chosen based on soil sampling for low to medium soil K levels. Five rates of injected liquid K and four rates of dry broadcast K were evaluated. During the season, plant measurements were taken including height, total nodes, and nodes to first fruiting branch. There was some variation in height and total nodes between differing amounts of K applied, but the biggest visual differences between plots were the presence of K deficiencies. After the growing season, plots were harvested, seed cotton weighed, and then ginned. After ginning, samples were sent to Cotton Inc. for HVI analysis. Plots with higher rates of liquid K showed the greatest yield response, the greatest fiber quality response and the greatest return on investment.

#### **INTRODUCTION**

For the past decade, Texas has continued to dominate U.S. cotton production. Much of the state's cotton is produced on clay soils in the Blacklands and Gulf Coast. Although K deficiencies have been reported in these regions in various years over the past 20 years, the frequency of reported K deficiency symptoms seems to be on the rise, and the geographic occurrence seems to be increasing as more K is mined from the soils. Additionally, under deficient K levels, cotton plants are more prone to foliar diseases that can further reduce the yield potential.

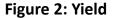
Previous research has shown a two bale cotton crop will remove 30 lbs K/acre. While a 2 bale rainfed crop is generally considered strong, increased yield potential in new varieties and better

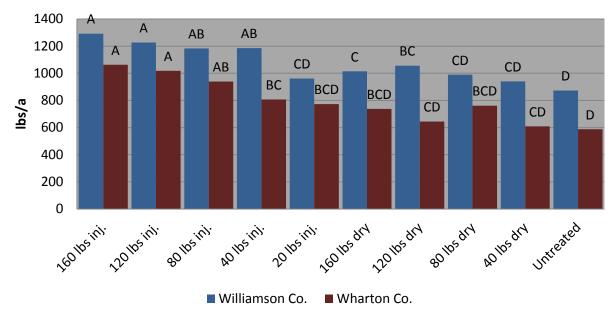
pest management have pushed cotton yields to 3-4 bales, and even exceeded 5 bales on irrigated land. As K demand increases, deep profile soil samples indicate a reduced level of plant available K in some production areas. The objective of the research was to evaluate the effect of K application rates and methods on cotton growth, development, yield, and fiber quality.

#### MATERIALS AND METHODS

Studies were initiated at two field sites with a previous history of K deficiency, one in Williamson County in the Blacklands region and one in Wharton County in the Upper Gulf Coast region. Based on soil test results, 0 and 60 lbs K<sub>2</sub>O/acre were recommended for the Wharton and Williamson sites, respectively, and soil test K (ammonium acetate) levels were 150 and 60 for the sites. Treatments were 0, 20, 40, 80, 120, and 160 lbs K<sub>2</sub>O/acre applied using liquid 0-0-15 as KCl, and 40, 80, 120, and 160 lbs of K<sub>2</sub>O/acre applied as a granular 0-0-60. The liquid K treatments were injected approximately four inches to the side of the row at a 6 inch depth. The dry treatments were broadcast by hand and incorporated with light tillage. Both K application methods occurred 2 - 3 weeks prior to planting. In early April, cotton cv. DP 0935B2RF was planted into a Lake Charles clay loam at the Wharton site. In mid-April, cv. Phytogen 499WRF was planted into a Burleson clay at the Williamson county site. Phosphorous and nitrogen were applied based on soil test recommendations for 2 bale/acre cotton yield goal.

In-season plant measurements included stand counts, plant height, nodes to first fruiting branch, and total nodes. After harvest, yield was calculated, and samples sent to Cotton Inc. for HVI analysis. For return on investment calculations, a base value of 75 cents/lb of lint was used and then lint values calculated using the 2013 loan calculator provided by Cotton Inc. The return on investment calculations only include fertilizer costs and are presented relative to the untreated check. Fertilizer prices used were \$520 per ton of 0-0-60 and \$275 per ton of 0-0-15.


#### **RESULTS AND DISCUSSION**


Yield and other significant data for the 2013 crop are presented in Figures 1-4. There was below normal rainfall for most of the growing season at both locations, but good yields were obtained due to the timeliness of the rain. Visually, the biggest differences between treatments were the presence and severity of K deficiency symptoms in the leaves. Plots with higher rates of K, especially injected liquid K, showed fewer K deficiency symptoms. Higher rates of K had a small effect on plant height in the Wharton location but seemingly no effect at the Williamson location (Figure 1). Near the end of the season, weather conditions were conducive for some foliar disease, and disease symptoms were observed in the K deficient treatments. Overall, there appears to be a positive correlation with amount of K applied, and the impact on yield and plant health. Treatments with a high rate of liquid K had higher yields compared to a similar rate of dry K at both locations (Figure 2). This could be attributed to placement and mobility of K in the soil. The liquid K was placed in the active root zone while the dry K was less plant available due to dry soil surface conditions.

The highest rates of injected K had a slight positive effect on lint loan price at the Wharton location, while the dry K had no significant effect. At the Williamson location, there were mixed effects on loan price due to high micronaire (Figure 3). When the K rate and price factors are used to calculate the net return on investment, fewer significant differences were observed for both sites (Figure 4). Despite the highest injected rates being considered unrealistic for farmers, a significant return on investment was obtained from the higher injected rates. As with yield, the liquid treatments had a higher return on investment than the dry treatments of a similar rate.



Figure 1: Plant Height





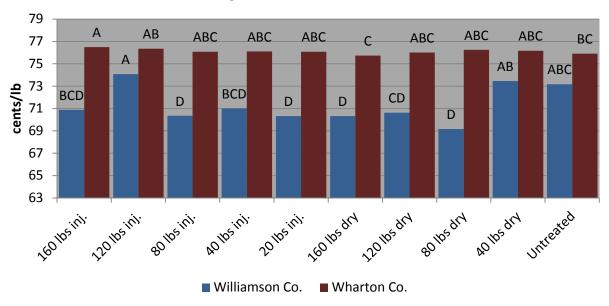
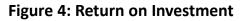
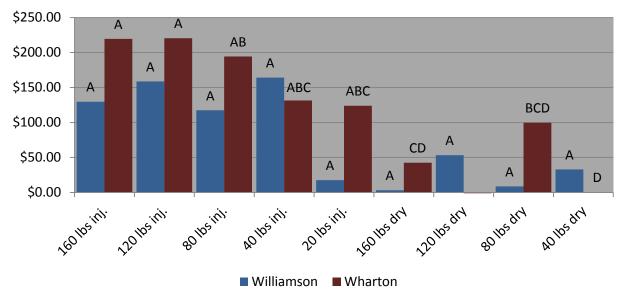





Figure 3: Net Loan Price





#### CONCLUSIONS

Applications of K had a positive effect on yield and fiber quality in soils with 150 ppm of soil K or less. Treatments with injected liquid K showed greater plant response than treatments with dry K and therefore a higher K use efficiency. Return on investment was higher, on average, for the injected treatments versus the dry treatments.

#### ACKNOWLEDGEMENTS

We would like to thank the Stiles Farm Foundation for the use of their land and equipment, Mr. Glenn Emshoff for the use of his land: Cotton Inc. for providing fiber analysis and financial support: United Agricultural Cooperative, Inc. for donating the fertilizer; IPNI for partial support of this research.

# **Preparing Your Ranch for the Next Drought**

## Larry A. Redmon, State Forage Specialist Mark L. McFarland, State Soil Fertility Specialist Texas A&M AgriLife Extension Service Department of Soil and Crop Sciences College Station, Texas

They say hindsight is 20-20. The question is: What lessons can we learn in hindsight to minimize the negative effects of the next drought? Because there certainly *will* be a next drought. Below are several key factors to help prepare for, and survive, the next drought.

#### Adjust Stocking Rate

Even when the production system is irrigated, drought will be part of the risk associated with forage production, and by extension, livestock production. One immediate and dramatic strategy that can mitigate the negative effects of future drought events is to adjust the stocking rate of the cow herd to 75% of what could be maintained based on long-term precipitation and forage production records. This stocking rate *should* be based on several years (more is better) of observing the quantity of forage produced under the typical management strategy. Additionally, cow size has increased over the years. Larger cows require more forage; thus the stocking rate should also be adjusted for a difference in cow size if the ranch used to run 100 cows 25 years ago when average cow size was 900 to 1000 pounds/head.

When stocked at 75%, livestock producers usually will not be overstocked during most drought years. This prevents having to purchase expensive feed in an attempt to "feed your way out of a drought". The 75% stocking rate also will reduce the need to sell cows at a time when many others are being sold and prices are deflated. During years of good forage production, stocker calves may be used as flex grazers to utilize excess forage. Calves may come from the producer's herd (keep them longer) or may be purchased or grazed on a gain or head/day basis. Excess forage in good years also may be harvested and stored for drought years or sold as hay.

Forages should never be grazed "to the roots" under any circumstance; removal of most or all green leaves deprives the plant of the ability to convert sunlight into carbohydrates (energy) vital for plant growth. Decreased carbohydrate production results in decreased root production, thus reducing the plant's ability to obtain necessary water and nutrients from the soil. The relationship between leaves and roots is critical at all times, but especially during drought. Besides allowing the plant to carry out optimum photosynthetic activity, adequate green leaf residue also reduces soil moisture evaporation and promotes infiltration of precipitation that is received. When there is little or no forage residue, raindrop impact on bare ground can damage soil structure resulting in surface crusting, reduced rainfall infiltration and much greater water loss as runoff. For bermudagrass, a target residue height should be no less than 4 inches while other species will be different depending on their growth habit. Some of the tall, bunch grasses like little or big bluestem should not be grazed shorter than 10 to 12 inches.

#### **Store Hay and Use Hay Substitutes**

If you do not produce your own hay, "drought management hay" should be purchased in nondrought years and properly stored. Properly stored hay will retain its nutritive value for many years. Hay should be stored under a roof on a well-drained or impervious surface. Hay tarps may also be used but the life expectancy is less than a storage barn. Finally, round bale hay may be stored in the field, but the loss due to weathering will be much higher compared to hay stored in a barn or under a tarp. Hay stored outside should be stored in rows oriented north-south on a well-drained slope. Flat ends should be together, but there should be 2-3 feet between the round sides of the rows. More importantly, purchasing hay during a drought can be difficult and costly, and often producers are forced to buy what is available even if it is low quality. To stretch limited hay supplies, use corn or other plant by-products as substitutes for hay. However, forage should generally comprise at least 50% of the diet. One pound of corn will replace about 2.25 pounds of hay, so 450 pounds of corn could substitute for a 1000-pound round bale of hay. Nevertheless, be aware that attempting to "feed your way out of a drought" can be very expensive. Do not be afraid to sell the cattle! Cut your losses!!

#### Manage Fertilizer Inputs

Fertilizer is never inexpensive, and all fertilizer nutrients have increased in cost dramatically in recent years. Thus, the first inclination of livestock producers is to not fertilize during drought. This is seldom a wise strategy. Nitrogen is essential for photosynthesis, which enables the plant to produce its own food. Phosphorus and potassium are critical for root development, water use efficiency, and overall plant vigor. Soil testing and implementing a well-balanced fertility program can help plants survive drought and recover more rapidly after the drought has ended.

If fertilizer already has been applied, but there has been no significant precipitation, fertilizer will remain in the upper soil profile. Although nitrogen is subject to some volatilization loss as ammonia gas to the atmosphere under certain conditions (wet soil or sod, high soil pH, elevated temperatures), the fertilizer investment in the pasture program will not have been wasted. When precipitation does occur, the plant will re-initiate growth and plant uptake of the fertilizer nutrients will occur.

If fertilizer has not been applied, the tendency of many producers is to take a "wait and see" attitude regarding a break in the prevailing dry weather pattern. This strategy reduces financial risk but may result in missing the first good precipitation event. Pay attention to weather forecasts and if it appears that the pattern may change and offer a higher potential for precipitation, make every attempt to get the fertilizer in the field before that next rain. Fertilizing immediately AFTER a rainfall event is not recommended. Addition of a urease inhibitor to ureacontaining fertilizers (urea and liquid 32%) also may be justified to reduce potential nitrogen volatilization losses when chances for rainfall are uncertain.

#### **Summary**

The following key points should be remembered regarding preparation for the next, and inevitable, drought event.

For commercial livestock producers, attempting to feed your way out of a drought is usually not economically viable and should not be attempted.

The cow herd should be stocked for 75% of what the forage resource can produce based on long-term records.

Properly fertilized forages tolerate and recover from drought better than poorly fertilized forages.

■ It is generally better to have fertilizer in the field waiting on a precipitation event than to fertilize after rain, so that the rainfall can move nutrients into the plant root zone for uptake.

In the afraid to sell cows; protect your forage resources by culling deeply before the drought becomes too severe.

# Managing Fertilizers to Protect Groundwater Quality

## Kristine Uhlman, Extension Program Specialist – Water Resources Mark L. McFarland, Professor and State Soil Fertility Specialist Diane E. Boellstorff, Assistant Professor and Extension Water Resources Specialist Texas A&M AgriLife Extension Service Dept. of Soil and Crop Sciences College Station, Texas

Inorganic and/or organic fertilizers are important for the production of most agricultural crops, and also are used by homeowners for the lawn and garden. If you store and/or use fertilizers on your property and if you obtain your drinking water from a well, this publication provides basic knowledge and suggested practices to reduce the potential for fertilizers to contaminate your drinking water.

An inorganic fertilizer is a mineral nutrient source containing less than 5.0% of carbonaceous material. Examples of inorganic fertilizers include products such as ammonium sulfate and urea ammonium nitrate. In reference to fertilizers, the term 'organic' typically means matter from a once-living organism. Accordingly, organic fertilizers are products or materials composed of plant and/or animal residues such as manure, compost, municipal biosolids, seaweed, guano, and processed bone meal.

The State of Texas requires all products sold commercially as fertilizer to be labeled with the product guaranteed analysis. A guaranteed analysis lists the minimum percentages of primary, secondary, and micro plant nutrients contained in the product. This information allows for product comparisons and enables proper rates of application to be determined. While inorganic fertilizers must be labeled, organic products (such as composts) sold as "soil amendments" are not. Many land grant university laboratories and commercial laboratories offer testing services to determine the nutrient content of organic products.

Nitrogen is the most common groundwater contaminant originating from the application of fertilizers and organic soil amendments. Other nutrients have been found in groundwater, but nitrogen concentrations are more likely to exceed health-based criteria.

The nitrate form of nitrogen (NO<sub>3</sub>-N) is very soluble and can leach downward, particularly in coarse-textured (sandy) soils. Nitrate is undetectable without testing because it is colorless, odorless, and tasteless. The Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) for nitrate-nitrogen<sup>1</sup> in drinking water is 10 milligrams per liter (mg/L) based on acute health effects, specifically the risk of methemoglobinemia (sometimes referred to as "blue baby syndrome"), in which blood lacks the ability to carry sufficient oxygen to individual body cells. Acute health effects are those that result from ingestion of a contaminant over a short period of time.

<sup>&</sup>lt;sup>1</sup> Nitrate concentrations in water are reported as 'nitrate-nitrogen (NO<sub>3</sub>-N)' or total nitrate (NO<sub>3</sub>). Use the following to compare the two reporting systems: 10 mg/L nitrate-nitrogen (NO<sub>3</sub>-N) = 44.3 mg/L nitrate (NO<sub>3</sub>).

Private well owners are not required to monitor their drinking water quality and information about local groundwater contamination may be difficult, if not impossible to obtain. In areas with significant historic or current inorganic or organic nitrogen application, drinking water from private wells should be tested annually to determine nitrate concentration.

## GUIDANCE AND REGULATIONS ON FERTILIZERS IN TEXAS

The Office of the Texas State Chemist [http://otscweb.tamu.edu/] regulates the sale of fertilizers and is tasked with protecting consumers and enhancing agribusiness through its feed and fertilizer regulatory compliance program, surveillance and monitoring of animal-human health and environmental hazards, and preparedness planning. Texas regulations establish specific limits on heavy metal contaminants that may be found within various fertilizers, and testing and labeling requirements.

The Occupational Safety and Health Administration (OSHA) in its hazard communication standard requires employers to include in Material Safety Data Sheets (MSDS) information on any product component present at 1% or greater (0.1% for constituents known to be carcinogens). If hazardous constituents are present in sufficient quantity in fertilizer products, that information can be obtained from the MSDS. The MSDS is available at time of purchase, or can be obtained by searching the product name on the internet.

Organic fertilizers and soil amendments derived from manures and animal mortalities also must be managed to reduce the risk of bacterial contamination of drinking water. Extension publications *Composting Manure and Sludge* (Sweeten and Auvermann, 2008), *Easy Gardening Composting* (Masabni and Lillard, 2011), and Composting Large Animal Carcasses (Auvermann, et al., 2006) are recommended to ensure the production and use of organic materials does not impact groundwater.

Following label instructions coupled with proper training and licensing, and review of the MSDS, will ensure fertilizer use is protective of the environment and reduces the potential for contamination of your water supply.

The following questions are designed to help identify potential risks associated with livestock feeding and holding pens. Many of these situations can lead to contamination of your drinking water if they are not managed properly.

If you answer YES or don't know the answer for any of the following questions, you may have a high-risk situation on your property. Refer to the factsheet section with the same number as that question (under the heading "What you should know about . . .") for more information.

| YES | NO |                                                                                               |
|-----|----|-----------------------------------------------------------------------------------------------|
|     |    | 1. Are your fertilizer storage facilities located closer than 100 feet from your water well?  |
|     |    | 2. Do you mix and load fertilizers on your property?                                          |
|     |    | 3. Do you dispose of or burn fertilizer containers on your property?                          |
|     |    | 4. Do you apply fertilizer on your property without first getting a soil test recommendation? |

Groundwater is the underground water that replenishes wells and springs. It is the source of drinking water for many Texans. Millions of gallons of groundwater may be located under the typical acreage, farm, or ranch. Fertilizer and pesticide storage areas, fuel tanks, livestock pens, manure and wastewater storage, and septic systems may be situated above the groundwater aquifer and all are potentially major sources of pollution. The management decisions you make on your property can significantly affect the quality of your drinking water and your family's health. These decisions can also affect your potential legal liability and the value of your property.

## What you should know about ....

## 1. FERTILIZER STORAGE AND HANDLING PRACTICES

Proper storage and handling of fertilizers may necessitate the construction of a new facility or modification of an existing structure. Factors to consider in the design of a fertilizer storage facility include ventilation, water access, temperature control, and worker safety. Professional assistance should be obtained for the design/installation of a new or modified storage structure. An example plan is shown in Figure 1.

Stored fertilizers can pose a danger to fire-fighters and the environment. Reducing fire risk in the storage area is of primary concern, and the following also should be considered:

- All storage facilities should be at least 100 feet away and downslope from any drinking water well. Distances should be greater in areas of fractured shallow bedrock or sandy soils.
- Road access should be adequate for deliveries and emergency equipment.
- Design your storage facility so that in the event of a fire, contaminated surface water will drain to a confined area. If you store large volumes of fertilizer, the confined area should consist of an impermeable drainage pad with sump for liquid collection.
- The mixing and loading area should be adjacent to the storage facility to minimize the distance chemicals must be transported.
- Liquid and dry products should be stored separately, and bags should be stored on pallets.
- The containment area for large bulk tanks should be large enough to confine 125% of the contents of the largest bulk container, plus the displaced volume of any other storage tanks.

- Post signs and labels identifying contents to give emergency personnel important information during fires or spills.
- Lock the facility to improve security.

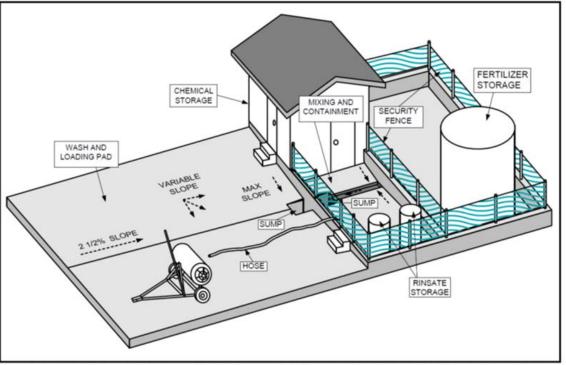



Figure 1. Farm-sized fertilizer facility. Source: Modular Concrete Wash/Containment Pad for Agricultural Chemicals, by. R.T. Noyes and D.W. Kammel, American Society of Agricultural Engineers Paper Number 891613.

## 2. FERTILIZER MIXING AND LOADING PRACTICES

Soil and groundwater contamination can result from small quantities spilled regularly in the same place. Cleanup of spills should follow the instructions provided by the manufacturer and also outlined on the MSDS. You can minimize spills by following these basic guidelines:

- Use a nurse tank to transport water to the mixing and loading site to avoid working with chemicals near any well.
- Mixing sites should be moved within the field of application each year to avoid build-up of spilled chemicals in the soil.
- Mixing sites should not be on gravel driveways or other surfaces that allow spills to move quickly into the soil.
- Install back siphon prevention devices on plumbing, hoses, or hydrants to prevent reverse flow of liquids into the water supply.
- Never put the water supply hose in the mixing tank; leave a 6-inch air gap between the hose and top of the sprayer tank.

- All personnel should be trained to follow exact procedures in handling fertilizer materials, particularly anhydrous ammonia and ammonium nitrate.
- Closed handling systems transfer chemicals directly from a storage container to the application equipment and may be a good investment.
- Use rinsate for mixing subsequent loads.
- MSDS include descriptions of appropriate storage conditions as well as chemical exposure and spill response actions with emergency contact telephone numbers.

## 3. CONTAINER DISPOSAL

Fertilizer containers (bags, jugs, etc.) can be a source of pollution if not disposed of properly. Burning fertilizer bags is illegal in Texas. Follow the guidelines below to minimize potential problems:

- Purchase fertilizer materials in bulk to minimize the number of containers.
- Purchase chemicals in returnable containers, when possible.
- Triple rinse containers when feasible and pour rinsate into the applications tanks.
- Product MSDS information will contain instructions for appropriate disposal of containers and excess chemicals, and emergency contact telephone numbers.

## 4. FERTILIZER USE PRACTICES

The most important factors affecting the potential for nitrate pollution of groundwater from agricultural production are related to rate and timing of fertilizer application. Fertilizer application rates must be based on crop yield potential. In addition, soil testing is essential to measure residual nitrogen levels in the soil which can be credited to reduce supplemental fertilizer application rates. Because nitrate is soluble, nitrogen fertilizer should be applied as close to the time of crop need as possible to ensure maximum uptake by plants. Where possible, cover crops also can be used to recover residual nitrogen and reduce potential leaching losses.

The following practices are protective of groundwater.

- Soil Test. Annual soil testing enables land managers to determine the most economical and environmentally appropriate application rate of nitrogen fertilizer by crediting residual nutrients. Furthermore, research has shown that in addition to standard soil samples collected to a depth of 6 inches, deep samples (6 to 18 or 6 to 24 inches) tested for residual nitrogen help optimize application rates. Soil testing services are available through the Texas A&M AgriLife Extension Service Soil, Water and Forage Testing Laboratory at Texas A&M [http://soiltesting.tamu.edu] or various commercial laboratories.
- **Rate of application.** Match the rate of fertilizer application with the expected crop yield to prevent over-application.

- **Application timing.** Apply nitrogen fertilizer as close to the time of plant demand as possible.
- **Test organic amendments.** Organic soil amendments that do not have a fertilizer label should be used sparingly or tested to determine the appropriate rate of application.
- Avoid fall nitrogen applications on coarse-textured soils. Coarse-textured soils with low water holding capacity have a greater potential to allow nitrate leaching.

## **Remember:**

The following management practices help reduce the risk of groundwater contamination:

- Avoid storing fertilizers by buying appropriate amounts and sharing leftovers with others.
- Store and load fertilizers at least 100 feet from the well, and downslope if possible.
- Make sure all bags and containers are clearly labeled.
- Secure fertilizers from livestock, pets, and children. Put up a fence if necessary.
- Use a separate tank to provide water for mixing fertilizers instead of using a hose directly from the well.
- When filling a tank, maintain an air gap of at least six inches between the end of the hose and the liquid level in the tank to prevent backflow.
- Install anti-backflow devices on your faucets.
- Dispose of all rinsate on the field being fertilized, or save as mixing water for later loads.
- Do not pour rinsate down a drain or on a gravel surface.

## References

Auvermann, B., S. Mukhtar, and K. Heflin. 2006. Composting Large Animal Carcasses. Texas A&M System, AgriLife Extension Publication E-422, 11-06.

- Eash, N.S. and H.P. Denton. 1996. Assessing Your Fertilizer Storage and Handling. The University of Tennessee, Knoxville, SP484 F, 4 pp.
- Masabni, Joseph and P. Lillard. 2011. Easy Gardening Composting. Texas A&M System, AgriLife Extension Publication E-278, 03-11
- Sweeten, John M. and B. W. Auvermann. 2008. Composting Manure and Sludge. Texas A&M System, AgriLife Extension Publication E-479, 06-08.
- Weston, Dale and B. Seelig. 1994. Managing Nitrogen Fertilizer to Prevent Groundwater Contamination. North Dakota State University Extension Bulletin No. 64.

## Acknowledgement

Partial funding for this project was provided by the Texas State Soil and Water Conservation Board through a CWA 319(h) grant from the U.S. Environmental Protection Agency.



## Enhancing Sorghum Nitrogen Use Efficiency Through Fertilizer Management

Mark L. McFarland, Professor and Soil Fertility Specialist<sup>1</sup>,Dennis Coker, Extension Program Specialist – Soil Fertility<sup>1</sup>, Jake Becker, Research Assistant<sup>2</sup>, Russell Sutton, Research Scientist – Small Grains Breeding<sup>3</sup>, and Archie Abrameit, Extension Program Specialist and Stiles Farm Manager<sup>4</sup> Texas A&M Agrilife Extension Service Department of Soil and Crop Sciences College Station, Tx<sup>1</sup>

#### Background

Grain sorghum is a major crop in Texas and the second most important crop grown for feed and bio-fuel feedstock in the United States. Managing input costs, particularly fertilizer in light of recent substantial increases in material costs, is critical to maintain the economic viability of sorghum production. Nitrogen (N) is an essential plant nutrient and the one applied in the greatest amounts for crop growth. However, N also is the most dynamic of all the essential nutrients, being subject to loss by leaching, runoff, and denitrification (volatilization). Enhancing N use efficiency through the use of slow release nitrogen sources or by addition of compounds which stabilize N in the soil environment could help optimize fertilizer application rates, increase profits, and reduce potential environmental impacts.

Slow release N sources have been marketed extensively in the horticultural sector as a means for limiting N losses and enhancing plant recovery. ESN (Agrium) is a granular, plastic coated urea product designed to retard release of N to the environment for 4 to 6 weeks. Urease inhibitors, such as Agrotain (Agrotain International), are designed to stop the hydrolysis of urea to ammonia for 10 to 14 days under normal field conditions and thereby reduce ammonia volatilization. SuperU (Agrotain International) is a granular N source with a urease inhibitor and a nitrification inhibitor to potentially reduce ammonia volatilization and denitrification or leaching.

#### **Materials and Methods**

Background soil samples were collected from multiple locations to identify sites with low residual N levels. It is important to note that the majority of the fields tested had elevated residual N levels that precluded their use. However, three locations had sufficiently low residual soil N levels (< 36 lbs N/acre in the upper 24 inches) and were selected for the project.

All study locations were in dryland production. Additional soil sampling was subsequently conducted at each location and results of the nutrient analyses used to determine treatment strategies. Urea ammonium nitrate (UAN, 32-0-0) and granular urea (46-0-0) were used as standard N sources. UAN was applied alone at rates of 0, 30, 60, 90, and 120 lb N/A to verify

the yield response to supplemental N. UAN also was applied at three rates (30, 60, and 90 lb N/A) with addition of the urease/ nitrification inhibitor Agrotain Plus. Urea was hand applied at three rates (30, 60, and 90 lb N/A) and used as a standard N source for comparison with the slow-release nitrogen products SuperU and ESN. Specific treatments used at each location and field site information are presented below.

Monthly rainfall accumulation during February and March ranged from average to 500 percent of long-term average across study sites. However, percent of average monthly rainfall for April, May, and June, respectively, was 88, 30, and 47 for Hill County, 54, 50, and 23 for Hunt County, and 6, 75, and 5 for Williamson County.

## Central Blacklands

The study site was a Burleson clay soil under strip-tillage management in Williamson County at the Stiles Farm near Thrall, Texas. Soil samples collected in January 2012 had residual soil test  $NO_3$ -N levels of 8, 8, and 20 lb/A for depths of 0 to 6, 6 to 12, and 12 to 24 inches, respectively. In late January, 200 lb of 2-6-12 liquid fertilizer was subsurface banded in the seed row. On April 2, grain sorghum hybrid DK 3707 was planted at a density of 65,000 seed per acre.

Experimental plots were 60 feet in length and four rows wide, with 38-inch spacing between rows. Treatments were replicated five times and arranged in a randomized complete block design. Rates of N, P, and Zn fertilizer were based on soil test results utilizing a crop yield goal of 5,000 lb per acre. Phosphorus was applied at 12 lb  $P_2O_5/A$  as ammonium polyphosphate (10-34-0) and Zn at 5 lb/A as TraFix ZnXL (Helena Chemical Co.) across all treatments in the study. Fertilizer treatments were side-dress banded at planting on April 2 and 3. Except where indicated, UAN was the sole source of N fertilizer applied. Agrotain was added at a rate of 1.5 quarts/ton of UAN based on label recommendations. Treatments are shown in Table 1.

In-season measurements included uppermost leaf chlorophyll (SPAD 502, Minolta) and total N at peak flower based on eight subsamples per experimental unit. Whole-plant biomass samples were collected at the soft dough stage from five feet on each of two yield rows and processed separately as stover and grain for determination of total N. Ten feet from each of two center rows of each plot was harvested by hand on August 3. Plant population counts were made from the harvested area. Harvested grain was threshed with a portable Amalco thresher, plot weights measured, and test weight and grain moisture determined using a stationary Dickey Jon meter.

#### Mid-Northern Blacklands:

The study site was a Houston Black clay soil located in Hill County on a producer field near Hillsboro, Texas. Soil samples collected March 1 had residual soil test  $NO_3$ -N levels of 2, 4, and 10 lb/A for depths of 0 to 6, 6 to 12, and 12 to 24 inches, respectively. Grain sorghum hybrid

DKS 44-20 was planted on March 28 at a density of 70,000 seed/A. At planting, liquid fertilizer containing 6-20-0 with 0.77% Zn was applied in-furrow at a rate of 33 lb/A.

| Treatment                             | Application     | Timing      |
|---------------------------------------|-----------------|-------------|
|                                       | Method          |             |
| 1. 0 lb N                             | Coulter         | At planting |
| 2. 30 lb N as UAN                     | Coulter         | At planting |
| 3. 60 lb N as UAN                     | Coulter         | At planting |
| 4. 90 lb N as UAN                     | Coulter         | At planting |
| 5. 120 lb N as UAN                    | Coulter         | At planting |
|                                       | ·               |             |
| 6. 30 lb N as UAN                     | Surface dribble | At planting |
| 7. 60 lb N as UAN                     | Surface dribble | At planting |
| 8. 90 lb N as UAN                     | Surface dribble | At planting |
| 9. 30 lb N as UAN with Agrotain Plus  | Surface dribble | At planting |
| 10. 60 lb N as UAN with Agrotain Plus | Surface dribble | At planting |
| 11. 90 lb N as UAN with Agrotain Plus | Surface dribble | At planting |
|                                       |                 |             |
| 12. 30 lb N as urea                   | Surface dribble | At planting |
| 13. 60 lb N as urea                   | Surface dribble | At planting |
| 14. 90 lb N as urea                   | Surface dribble | At planting |
| 15. 30 lb N as SuperU                 | Surface dribble | At planting |
| 16. 60 lb N as SuperU                 | Surface dribble | At planting |
| 17. 90 lb N as SuperU                 | Surface dribble | At planting |
| 18. 30 lb N as ESN                    | Surface dribble | At planting |
| 19. 60 lb N as ESN                    | Surface dribble | At planting |
| 20. 90 lb N as ESN                    | Surface dribble | At planting |

| Table 1. Fertility treatments, application method, and timing of treatment installation for the |
|-------------------------------------------------------------------------------------------------|
| study site at Stiles Farm Foundation, Williamson County, Texas.                                 |

Plots were 65 feet in length and four rows wide, with 30-inch spacing between rows. Treatments were replicated five times and arranged in a randomized complete block design. Rates of N and P fertilizer were based on soil test results with a yield goal of 5,000 lb/A. Phosphorus was applied at 35 lb  $P_2O_5/A$  as 10-34-0 and Zn at 5 lb/A as TraFix ZnXL across all treatments in the study. Conventional tillage used at the site included planting on a flat surface. Thus, all fertilizer treatments were side-dress banded after crop emergence, stage 2 on April 18. Except where indicated, UAN was the sole source of N fertilizer applied. Agrotain was added at a rate of 1.5 quarts/ton of UAN based on label recommendations. Treatments included in the study near Hillsboro are shown in Table 2.

| Treatment                             | Application     | Timing     |
|---------------------------------------|-----------------|------------|
|                                       | Method          |            |
| 1. 0 lb N                             | Coulter         | Post plant |
| 2. 30 lb N as UAN                     | Coulter         | Post plant |
| 3. 60 lb N as UAN                     | Coulter         | Post plant |
| 4. 90 lb N as UAN                     | Coulter         | Post plant |
| 5. 120 lb N as UAN                    | Coulter         | Post plant |
|                                       |                 | ·          |
| 6. 30 lb N as UAN                     | Surface dribble | Post plant |
| 7. 60 lb N as UAN                     | Surface dribble | Post plant |
| 8. 90 lb N as UAN                     | Surface dribble | Post plant |
| 9. 30 lb N as UAN with Agrotain Plus  | Surface dribble | Post plant |
| 10. 60 lb N as UAN with Agrotain Plus | Surface dribble | Post plant |
| 11. 90 lb N as UAN with Agrotain Plus | Surface dribble | Post plant |
|                                       |                 |            |
| 12. 30 lb N as urea                   | Surface dribble | Post plant |
| 13. 60 lb N as urea                   | Surface dribble | Post plant |
| 14. 90 lb N as urea                   | Surface dribble | Post plant |
| 15. 30 lb N as SuperU                 | Surface dribble | Post plant |
| 16. 60 lb N as SuperU                 | Surface dribble | Post plant |
| 17. 90 lb N as SuperU                 | Surface dribble | Post plant |
| 18. 30 lb N as ESN                    | Surface dribble | Post plant |
| 19. 60 lb N as ESN                    | Surface dribble | Post plant |
| 20. 90 lb N as ESN                    | Surface dribble | Post plant |

Table 2. Fertility treatments, application method, and timing of treatment installation for the study site in Hill County, Texas.

In-season measurements included uppermost leaf chlorophyll (SPAD 502, Minolta) and total N at peak flower. Measurements were based on subsampling eight leaves per experimental unit. Ten feet from each of two center rows of each plot was harvested by hand on July 23. Plant population counts were made from the harvested area. Heads of harvested grain were later threshed with a portable Amalco thresher, plot weights measured, and test weight and grain moisture determined using a stationary Dickey Jon meter.

#### Northern Blacklands:

The study site was a Houston Black clay soil located in far western Hunt County on a producer field near Floyd, Texas. Soil samples collected March 2 had residual soil test NO<sub>3</sub>-N levels of 1, 9, and 18 lb/A for depths of 0 to 6, 6 to 12, and 12 to 24 inches, respectively. Grain sorghum hybrid Pioneer 84G62 was planted on April 4 at a density of 70,000 seed/A. Plots were 65 feet

in length and four rows wide, with 30-inch spacing between rows. Treatments were replicated five times and arranged in a randomized complete block design. Rates of N and P fertilizer were based on soil test results with a yield goal of 5,000 lb/A. Phosphorus was applied at 35 lb  $P_2O_5/A$  as 10-34-0 and Zn at 5 lb/A as TraFix ZnXL across all treatments. All fertilizer treatments were side-dress banded after crop emergence, stage 2 on April 25. Except where indicated, UAN was the sole source of N fertilizer applied. Agrotain was added at a rate of 1.5 quarts/ton of UAN based on label recommendations. Treatments are shown in Table 3.

| Treatment                             | Application Method | Timing     |
|---------------------------------------|--------------------|------------|
| 1. 0 lb N                             | Coulter            | Post plant |
| 2. 30 lb N as UAN                     | Coulter            | Post plant |
| 3. 60 lb N as UAN                     | Coulter            | Post plant |
| 4. 90 lb N as UAN                     | Coulter            | Post plant |
| 5. 120 lb N as UAN                    | Coulter            | Post plant |
|                                       |                    |            |
| 6. 30 lb N as UAN                     | Surface dribble    | Post plant |
| 7. 60 lb N as UAN                     | Surface dribble    | Post plant |
| 8. 90 lb N as UAN                     | Surface dribble    | Post plant |
| 9. 30 lb N as UAN with Agrotain Plus  | Surface dribble    | Post plant |
| 10. 60 lb N as UAN with Agrotain Plus | Surface dribble    | Post plant |
| 11. 90 lb N as UAN with Agrotain Plus | Surface dribble    | Post plant |
|                                       |                    |            |
| 12. 30 lb N as urea                   | Surface dribble    | Post plant |
| 13. 60 lb N as urea                   | Surface dribble    | Post plant |
| 14. 90 lb N as urea                   | Surface dribble    | Post plant |
| 15. 30 lb N as SuperU                 | Surface dribble    | Post plant |
| 16. 60 lb N as SuperU                 | Surface dribble    | Post plant |
| 17. 90 lb N as SuperU                 | Surface dribble    | Post plant |
| 18. 30 lb N as ESN                    | Surface dribble    | Post plant |
| 19. 60 lb N as ESN                    | Surface dribble    | Post plant |
| 20. 90 lb N as ESN                    | Surface dribble    | Post plant |

Table 3. Fertility treatments, application method, and timing of treatment installation for the study site in Hunt County, Texas.

In-season measurements included uppermost leaf chlorophyll (SPAD 502, Minolta) and total N at peak flower. Measurements were based on subsampling eight leaves per experimental unit. Whole-plant biomass samples were collected at the soft dough stage from five feet of each of two yield rows and processed separately as stover and grain for determination of total N. The two center rows from each plot were harvested on August 24 with a JD 3300 combine equipped with a Harvestmaster Grain Gauge that measured plot weight, test weight, and grain moisture.

Plant population counts were made from the harvested area. For all harvested sites, data were analyzed by analysis of variance and means separated using Fisher's Least Significant Difference (LSD) at the five percent level ( $P \le 0.05$ ), where appropriate.

#### **Results and Discussion**

Yields of grain sorghum increased with increasing rate of applied N as UAN up to 60 lb/A in Hill and Hunt Counties. In contrast, there was no response to N rate in Williamson County (Table 5) due largely to limited rainfall in the weeks prior to planting and continuing through flowering. No fertilizer rate by source interactions were observed for grain yield. In addition, no significant differences in grain yield were observed between conventional N fertilizer sources and granular slow-release N sources or conventional liquid N (32%) with the N stabilizer additive within rates of N application at the three study locations (Tables 6-8). Below average rainfall early in the season may have limited the potential for a response to the products. However, yields in Hill and Hunt Counties were at or above average ranging from 4765 to 6177 lbs/acre.

| Treatments |        | Grain Yield <sup><math>\dagger</math></sup> |             |                   |
|------------|--------|---------------------------------------------|-------------|-------------------|
| Source     | N Rate | Hill County                                 | Hunt County | Williamson County |
|            | (lb/A) |                                             | (lb/A)      |                   |
| None       | 0      | 4828 c <sup>‡</sup>                         | 4400 b      | 2633 <sup>§</sup> |
| UAN        | 30     | 5459 b                                      | 4446 b      | 3006              |
| UAN        | 60     | 6103 a                                      | 5522 a      | 2714              |
| UAN        | 90     | 6038 a                                      | 5746 a      | 3424              |
| UAN        | 120    | 6297 a                                      | 6009 a      | 2911              |
| LSD        |        | 366                                         | 493         |                   |
| P>(F)      |        | 0.0001                                      | 0.0001      | 0.2548            |
| CV         |        | 4.7                                         | 7           | 19.3              |

Table 5. Effects of N (UAN) rate on grain sorghum yield at study sites in Hill, Hunt, and Williamson Counties, Texas.

<sup>†</sup>Grain yield corrected to 14% moisture.

<sup>\*</sup>Means within a column followed by the same letter are not different according to LSD ( $P \le 0.05$ ).

<sup>§</sup>Means within a column were not different ( $P \le 0.05$ ).

|                     | Grain Yield <sup><math>\dagger</math></sup> |           |           |
|---------------------|---------------------------------------------|-----------|-----------|
| N Source            | 30 lb N/A                                   | 60 lb N/A | 90 lb N/A |
|                     |                                             | (lb/A)    |           |
| UAN                 | 5663 <sup>‡</sup>                           | 6177      | 5911      |
| UAN + Agrotain Plus | 5658                                        | 5982      | 5719      |
| Urea                | 5674                                        | 5682      | 6138      |
| SuperU              | 5665                                        | 5974      | 5980      |
| ESN                 | 6032                                        | 5789      | 6100      |
| P>(F)               | 0.5948                                      | 0.3929    | 0.7871    |
| CV                  | 7.5                                         | 6.9       | 9.5       |

Table 6. Effects of N rate and source on grain sorghum yield in Hill County, Texas.

<sup>†</sup>Grain yield corrected to 14% moisture.

<sup>‡</sup>Means within a column were not different ( $P \le 0.05$ ).

|                     | Grain Yield <sup><math>\dagger</math></sup> |           |           |
|---------------------|---------------------------------------------|-----------|-----------|
| N Source            | 30 lb N/A                                   | 60 lb N/A | 90 lb N/A |
|                     |                                             | (lb/A)    |           |
| UAN                 | $4784^{\ddagger}$                           | 5155      | 5605      |
| UAN + Agrotain Plus | 4817                                        | 5254      | 5673      |
| Urea                | 4960                                        | 5290      | 5732      |
| SuperU              | 4765                                        | 5455      | 5783      |
| ESN                 | 5081                                        | 5588      | 5779      |
| P>(F)               | 0.4076                                      | 0.1598    | 0.8625    |
| CV                  | б                                           | 5.2       | 5.2       |

Table 7. Effects of N rate and source on grain sorghum yield in Hunt County, Texas.

<sup>†</sup>Grain yield corrected to 14% moisture.

<sup>‡</sup>Means within a column were not different ( $P \le 0.05$ ).

|                     |                   | Grain Yield <sup><math>\dagger</math></sup> |           |
|---------------------|-------------------|---------------------------------------------|-----------|
| N Source            | 30 lb N/A         | 60 lb N/A                                   | 90 lb N/A |
|                     |                   | (lb/A)                                      |           |
| UAN                 | 3108 <sup>‡</sup> | 3214                                        | 3068      |
| UAN + Agrotain Plus | 2875              | 3097                                        | 3175      |
| Urea                | 3046              | 2729                                        | 2779      |
| SuperU              | 2685              | 3161                                        | 3355      |
| ESN                 | 2961              | 2758                                        | 2567      |
| P>(F)               | 0.9361            | 0.6045                                      | 0.4227    |
| CV                  | 28.3              | 20.6                                        | 23.2      |

Table 8. Effects of N rate and source on grain sorghum yield in Williamson County, Texas.

<sup>†</sup>Grain yield corrected to 14% moisture.

<sup>‡</sup>Means within a column were not different ( $P \le 0.05$ ).

UAN alone at all rates significantly increased leaf chlorophyll at flowering compared to the zero N control (Fig. 1). However, there were no differences in leaf chlorophyll readings due to N source for any of three rates applied (Fig. 2a-c). UAN alone at rates of 60, 90, and 120 lbs N/acre significantly increased N concentration in mature leaves at flowering in Hunt County compared to the check (0 N) and 30 lbs N/acre; however, the same response was not observed at the other study sites (Table 9). There were no differences in mature leaf N concentration between conventional and slow-release N fertilizer sources or the N stabilizer additive across rates of N fertilizer at any of the three study sites in the Central Texas Blacklands (Tables 10-12).

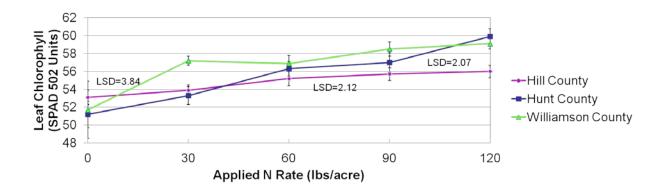



Fig. 1. Effects of N (UAN) rate on leaf chlorophyll at flowering at three locations in the Central Texas Blacklands. Means within a county were significantly different at increased rates of N according to LSD ( $P \le 0.05$ ). Standard error bars represent treatment means.

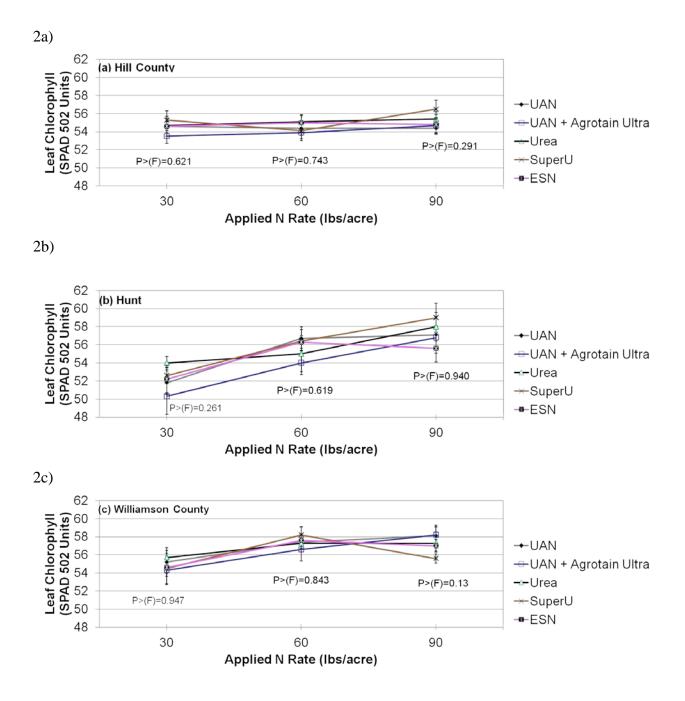



Fig. 2a-c. Effects of N rate and source on leaf chlorophyll at flowering at three locations in the Central Texas Blacklands. Means within a rate of N were not significantly different ( $P \le 0.05$ ). Standard error bars represent treatment means.

| Treatments |        | Leaf N Concentration <sup>†</sup> |                     |                   |
|------------|--------|-----------------------------------|---------------------|-------------------|
| Source     | N Rate | Hill County                       | Hunt County         | Williamson County |
|            | (lb/A) |                                   | (%)                 |                   |
| None       | 0      | 2.63 <sup>‡</sup>                 | 2.34 c <sup>§</sup> | 3.19              |
| UAN        | 30     | 2.58                              | 2.28 с              | 3.40              |
| UAN        | 60     | 2.61                              | 2.69 b              | 3.53              |
| UAN        | 90     | 2.52                              | 2.78 ab             | 3.53              |
| UAN        | 120    | 2.68                              | 2.89 a              | 3.61              |
| LSD        |        |                                   | 0.194               |                   |
| P>(F)      |        | 0.7726                            | 0.0001              | 0.0682            |
| CV         |        | 7.5                               | 5.6                 | 6.3               |

Table 9. Effects of N (UAN) fertilizer rate on leaf N concentration at flowering at three study sites in the Central Texas Blacklands.

<sup>†</sup>Second leaf below the flag leaf.

<sup>‡</sup>Means within a column were not different ( $P \le 0.05$ ).

<sup>§</sup>Means within a column followed by the same letter are not different according to LSD ( $P \le 0.05$ ).

|                     | Leaf N Concentration <sup><math>\dagger</math></sup> |           |           |
|---------------------|------------------------------------------------------|-----------|-----------|
| N Source            | 30 lb N/A                                            | 60 lb N/A | 90 lb N/A |
|                     |                                                      | (%)       |           |
| UAN                 | $2.56^{\ddagger}$                                    | 2.61      | 2.77      |
| UAN + Agrotain Plus | 2.56                                                 | 2.54      | 2.73      |
| Urea                | 2.63                                                 | 2.59      | 2.67      |
| SuperU              | 2.58                                                 | 2.61      | 2.63      |
| ESN                 | 2.62                                                 | 2.62      | 2.67      |
| P>(F)               | 0.9624                                               | 0.9473    | 0.6231    |
| CV                  | 7.5                                                  | 6.7       | 5.7       |

Table 10. Effects of N fertilizer treatment at three rates of application on grain sorghum leaf N concentration at flowering, Hill County, Texas.

<sup>†</sup>Second leaf below the flag leaf.

<sup>‡</sup>Means within a column were not different ( $P \le 0.05$ ).

|                     | Leaf N Concentration <sup><math>\dagger</math></sup> |           |           |
|---------------------|------------------------------------------------------|-----------|-----------|
| N Source            | 30 lb N/A                                            | 60 lb N/A | 90 lb N/A |
|                     |                                                      | (%)       |           |
| UAN                 | $2.37^{\ddagger}$                                    | 2.71      | 2.62      |
| UAN + Agrotain Plus | 2.33                                                 | 2.45      | 2.76      |
| Urea                | 2.52                                                 | 2.56      | 2.77      |
| SuperU              | 2.48                                                 | 2.60      | 2.84      |
| ESN                 | 2.43                                                 | 2.66      | 2.69      |
| P>(F)               | 0.3775                                               | 0.2253    | 0.0605    |
| CV                  | 6.7                                                  | 6.8       | 4.1       |

Table 11. Effects of N fertilizer treatment at three rates of application on grain sorghum leaf N concentration at flowering, Hunt County, Texas.

<sup>†</sup>Second leaf below the flag leaf.

<sup>\*</sup>Means within a column were not different ( $P \le 0.05$ ).

| Table 12. Effects of N fertilizer treatment at three rates of application on grain sorghum leaf N |
|---------------------------------------------------------------------------------------------------|
| concentration at flowering, Williamson County, Texas.                                             |

|                     | Leaf N Concentration <sup>†</sup> |           |           |  |  |  |  |
|---------------------|-----------------------------------|-----------|-----------|--|--|--|--|
| N Source            | 30 lb N/A                         | 60 lb N/A | 90 lb N/A |  |  |  |  |
|                     |                                   | (%)       |           |  |  |  |  |
| UAN                 | $3.32^{\ddagger}$                 | 3.5       | 3.54      |  |  |  |  |
| UAN + Agrotain Plus | 3.35                              | 3.5       | 3.51      |  |  |  |  |
| Urea                | 3.46                              | 3.41      | 3.53      |  |  |  |  |
| SuperU              | 3.36                              | 3.53      | 3.49      |  |  |  |  |
| ESN                 | 3.34                              | 3.46      | 3.52      |  |  |  |  |
| P>(F)               | 0.4222                            | 0.5852    | 0.9772    |  |  |  |  |
| CV                  | 3.6                               | 3.3       | 3.7       |  |  |  |  |

<sup>†</sup>Second leaf below the flag leaf.

<sup>‡</sup>Means within a column were not different (P $\leq$ 0.05).

When UAN was applied alone, grain and total N contents of sorghum biomass at the Hunt County site increased at rates of 60 lb N/A and above (Table 13). In contrast, stover, grain, and

total N content of harvested sorghum biomass were not affected by N rate in Williamson County (Table 14).

There were no differences in stover, grain, or total N content of plant biomass due to N source at the study site in Hunt County (Table 15). In contrast, plots in Williamson County receiving UAN at 60 lbs N/acre with Agrotain had greater stover N content compared to other treatments (Table 16). In addition, Williamson County plots receiving SuperU at 90 lbs N/acre had higher grain N content compared to other treatments (Table 16). However, similar results were not observed for total N content at lower or higher N rates with these products.

| Trea   | atments | N Content of Biomass |                     |        |  |  |
|--------|---------|----------------------|---------------------|--------|--|--|
| Source | N Rate  | Stover Grain         |                     | Total  |  |  |
|        | (lb/A)  |                      | (lb/A)              |        |  |  |
| None   | 0       | $21.4^{\dagger}$     | 31.1 b <sup>‡</sup> | 52.5 b |  |  |
| UAN    | 30      | 22.0                 | 35.2 b              | 57.3 b |  |  |
| UAN    | 60      | 29.4                 | 59.6 a              | 89.0 a |  |  |
| UAN    | 90      | 27.3                 | 62.5 a              | 89.8 a |  |  |
| UAN    | 120     | 27.0                 | 65.2 a              | 92.3 a |  |  |
| LSD    |         |                      | 13.0                | 17.2   |  |  |
| P>(F)  |         | 0.2499               | 0.0006              | 0.0012 |  |  |
| CV     |         | 18.5                 | 13.6                | 12.0   |  |  |

Table 13. Effects of N (UAN) rate on N content in biomass of mature grain sorghum, Hunt County, Texas.

<sup>†</sup> Means within a column were not different ( $P \le 0.05$ ).

<sup>\*</sup>Means within a column followed by the same letter are not different according to LSD ( $P \le 0.05$ ).

| Trea   | atments | N Content of Biomass |        |             |  |  |  |  |
|--------|---------|----------------------|--------|-------------|--|--|--|--|
| Source | N Rate  | Stover               | Total  |             |  |  |  |  |
|        | (lb/A)  |                      | (lb/A) |             |  |  |  |  |
| None   | 0       | $17.8^{\dagger}$     | 28.2   | $46.0^{\$}$ |  |  |  |  |
| UAN    | 30      | 22.6                 | 43.0   | 65.6        |  |  |  |  |
| UAN    | 60      | 24.9                 | 45.0   | 70.0        |  |  |  |  |
| UAN    | 90      | 23.4                 | 46.9   | 70.4        |  |  |  |  |
| UAN    | 120     | 30.0                 | 49.3   | 79.3        |  |  |  |  |
| P>(F)  |         | 0.4645               | 0.0662 | 0.1578      |  |  |  |  |
| CV     |         | 32.2                 | 18.4   | 21.7        |  |  |  |  |

Table 14. Effects of N (UAN) rate on N content in biomass of mature grain sorghum, Williamson County, Texas.

<sup>†</sup>Means within a column were not different ( $P \le 0.05$ ).

| Table 15. Effects of N source and rate on N content of mature sorghum biomass, Hunt Count | у, |
|-------------------------------------------------------------------------------------------|----|
| Texas.                                                                                    |    |

|                       | N Content of Biomass |        |           |        |         |           |        |        |        |
|-----------------------|----------------------|--------|-----------|--------|---------|-----------|--------|--------|--------|
| N Source              | 30 lb N/A            |        | 60 lb N/A |        |         | 90 lb N/A |        |        |        |
|                       | Stover               | Grain  | Total     | Stover | Grain   | Total     | Stover | Grain  | Total  |
|                       |                      |        |           |        | (lb/A)- |           |        |        |        |
| UAN                   | $22.7^{\dagger}$     | 34.9   | 57.6      | 30.8   | 56.1    | 86.9      | 25.8   | 60.1   | 85.9   |
| $UAN + Ag^{\ddagger}$ | 17.8                 | 33.1   | 50.9      | 26.9   | 50.6    | 77.6      | 22.7   | 62.2   | 84.9   |
| Urea                  | 20.5                 | 41.2   | 61.7      | 26.2   | 62.6    | 88.8      | 25.8   | 62.8   | 88.6   |
| SuperU                | 20.9                 | 43.5   | 64.4      | 24.4   | 51.5    | 75.9      | 27.7   | 66.1   | 93.8   |
| ESN                   | 23.8                 | 49.7   | 73.4      | 21.3   | 52.3    | 73.5      | 27.5   | 61.3   | 88.8   |
| P>(F)                 | 0.4261               | 0.0655 | 0.1007    | 0.0861 | 0.5774  | 0.4239    | 0.7716 | 0.9556 | 0.9338 |
| CV                    | 18                   | 15.5   | 14        | 13.4   | 17.9    | 14.1      | 20     | 15.9   | 15.3   |

<sup>†</sup>Means within a column were not different ( $P \le 0.05$ ).

<sup>‡</sup>UAN + Agrotain Plus

|                 | N Content of Biomass |        |       |           |                      |        |           |        |        |
|-----------------|----------------------|--------|-------|-----------|----------------------|--------|-----------|--------|--------|
| N Source        | 30 lb N/A            |        |       | 60 lb N/A |                      |        | 90 lb N/A |        |        |
|                 | Stover               | Grain  | Total | Stover    | Grain                | Total  | Stover    | Grain  | Total  |
|                 |                      |        |       |           | (lb/A)               |        |           |        |        |
| UAN             | $17.7^{\dagger}$     | 38.1   | 55.9  | 22.6      | 49.4 $ab^{\ddagger}$ | 72.1   | 17.1 b    | 44.2   | 61.3   |
| $UAN + Ag^{\$}$ | 20.0                 | 39.7   | 59.7  | 25.8      | 61.7 a               | 87.5   | 15.0 b    | 41.8   | 56.8   |
| Urea            | 17.1                 | 45.6   | 62.7  | 23.4      | 42.9 b               | 66.4   | 21.9 b    | 41.9   | 63.8   |
| SuperU          | 13.8                 | 35.0   | 48.7  | 20.9      | 45.1 b               | 65.9   | 39.6 a    | 50.1   | 80.1   |
| ESN             | 18.7                 | 34.5   | 53.2  | 17.6      | 39.5 b               | 57.2   | 18.5 b    | 36.3   | 54.8   |
| LSD             |                      |        |       |           | 12.7                 |        | 7.1       |        |        |
| P>(F)           | 0.5747               | 0.7528 | 0.804 | 0.6918    | 0.0276               | 0.1273 | 0.0005    | 0.4363 | 0.4135 |
| CV              | 26.3                 | 29.1   | 26.6  | 31.6      | 14.1                 | 17.6   | 16.4      | 19.5   | 25.8   |

Table 16. Effects of N source and rate on N content of mature sorghum biomass, Williamson County, Texas.

<sup>†</sup>Means within a column were not different ( $P \le 0.05$ ).

<sup>‡</sup>Means within a column followed by the same letter are not different according to LSD ( $P \le 0.05$ ).

<sup>§</sup>UAN + Agrotain Plus

#### **Summary**

Yield of grain sorghum and uppermost leaf chlorophyll responded to increased rates of applied N as UAN in two of three locations where seasonal rainfall was more comparable to long-term averages. However, neither UAN applied in combination with a urease-nitrification inhibitor (Agrotain) or slow-release granular N sources (ESN and SuperU) increased grain yield, leaf chlorophyll, or total leaf N when compared to conventional UAN or urea alone. At one location, grain and stover N content were affected by N treatment, but results were not consistent across rates or locations. Overall, results of the project showed that the selected N slow-release and stabilizer products did not offer yield advantages for grain sorghum production compared to conventional N sources under the conditions experienced during these studies.

An important related finding of this work was that elevated residual N levels measured in 75% of the fields evaluated as potential study sites limited site selection. These results further substantiate over 10 years of previous research in cotton and limited recent work in corn and grain sorghum indicating high levels of residual soil N in production regions across the state.

This research has shown that residual soil N to depths of 24 inches are effectively recovered by these crops and can be credited at 100% to reduce supplemental fertilizer needs. Certainly, crop failures and yield reductions due to periodic, and more recently, persistent drought conditions have played a role in nutrient build-up in some areas. However, given the widespread occurrence of the phenomenon additional research is needed to better define field soil sampling protocols that can enable targeted deep (upper 18 to 24 inches) sampling to measure and credit residual soil N. Combinations of yield mapping, veris technology, and other tools may provide new opportunities to do so. Efficient utilization of this highly mobile nutrient not only can improve production economics, but also will enhance the potential for grain sorghum producers to practice and be recognized for employing sound environmental management.

#### Acknowledgements

Funding support for this project was provided by the United Sorghum Checkoff Program. Thanks also to Koch Agronomic Services, Crop Production Services (Agrium), and Simplot for donations of fertilizer and related products.

# Central Texas Blacklands Tillage Trails Stiles Farm Foundation

## Archie Abrameit Extension Specialist and Stiles Farm Foundation Manager Thrall, Texas

## **Background:**

The Stiles Farm Foundation has as one of its objectives to evaluate tillage practices and tillage methods and to provide educational information to growers in the region.

The summary that follows is a compilation of 8 years of data from 2003-2010 comparing no till, conventional tillage and strip tillage in five rotations: corn09/corn10 etc., cotton 09/corn10 etc., sorghum09/cotton10 etc., corn09/cotton10 etc., and cotton09/sorghum10 etc.

#### **Discussion:**

The tillage plots are designed as large scale plots that are machine harvested by custom harvesters. The plots are 16 rows each on 38 inch row spacing with each tillage treatment replicated three times in each rotation. Depending on the field row length, each 16 row tillage treatment encompasses from 2 to 4 acres. All of the plots are dryland and receive no supplemental irrigation. The plots are grown on a Burleson Clay vertisol soil. Over the range of these years, growing conditions have ranged from very dry years to very optimal moisture years.

Conventional tillage consists of either chiseling with sweeps or heavy discing followed by multiple passes with a field cultivator. Strip tillage in 2003 was achieved using a DMI 5310 strip till unit. The 2004-2006 strip till plots were done with a Yetter Maverick 8 row strip till unit. The 2007-2010 plots were treated with the Orthman 1-tRIPr strip till tool.

The 2003-2010 tillage trials results listed show the rotation, yield and net income. Net income includes the value of the individual crop at harvest time with expense deductions that includes tillage trips, spraying, planting and harvesting as well as any other treatments at custom rates for the region. Other expenditures were actual costs as incurred during the season.

#### **Summary:**

There are benefits to some tillage in high clay content soils in the thermic regions prevalent in the Central Texas Blacklands. It may not be necessary to do whole acre tillage each year however. An annual check of compaction will be a good guide to determine if tillage is necessary as many factors are involved in compacted soils. Growers may not need to till the entire field depending on the crop to be planted and the previous crop but may want to consider some type of zone tillage such as strip tillage. Strip tillage allows for a narrow band of "clean soil" in the row with residue in the middles for moisture conservation. The soil band left after strip tillage will generally warm sooner in cool springs. In addition, strip till enables application

of fall or winter fertilizer placed strategically where the crop can use it more efficiently. Soil quality makes marked improvements by increasing the water holding capacity of the soil.

Including RTK guidance systems as a part of the strip till program further increases efficiency and results in cost savings with better fertilizer placement and a uniform crop stand.

| <b>ROTATION</b>                 | <b>YIELD</b>             | <u>NET PROFIT</u>  |
|---------------------------------|--------------------------|--------------------|
| CORN/CORN                       |                          |                    |
| No Till<br>Strip Till           | 84.4 bu/ac<br>88.0 bu/ac | \$72.73<br>\$72.19 |
| Conventional Till               | 90.5 bu/ac               | \$57.40            |
| COTTON/CORN                     |                          |                    |
| No Till<br>Strip Till           | 76.4 bu/ac<br>82.3 bu/ac | \$37.17<br>\$45.32 |
| Conventional Till               | 78.0 bu/ac               | \$01.55            |
| COTTON/SORGHUM*                 |                          |                    |
| No Till                         | 4414 lb/ac               | \$85.85<br>\$22.74 |
| Strip Till<br>Conventional Till | 4683 lb/ac<br>4806 lb/ac | \$93.76<br>\$87.26 |
| CORN/COTTON                     |                          |                    |
| No Till                         | 536 lb/ac                | \$04.92            |
| Strip Till<br>Conventional Till | 593 lb/ac<br>620 lb/ac   | \$30.99<br>\$07.73 |
| SORGHUM/COTTON                  |                          |                    |
| No Till                         | 590 lb/ac                | \$51.69            |
| Strip Till<br>Conventional Till | 651 lb/ac<br>686 lb/ac   | \$69.87<br>\$66.23 |

## 2003-2010 Tillage Trials: Stiles Farm Foundation

\*Represents 7 years data due to sorghum wind damage in 2005.

# Effect of Timing of Atoxigenic Strain Application on Aflatoxin Contamination of Corn In Texas - 2013

# Thomas Isakeit, Professor and Extension Plant Pathologist, Department of Plant Pathology, Texas A&M University, College Station, TX Archie Abrameit, Manager & Extension Specialist, Stiles Farm Foundation, Thrall, TX Peter McGuill, Victoria County Extension Agent – Victoria, TX 77904

The objective of this study was to evaluate the reduction of aflatoxin contamination of corn with different timings of application of a commercial atoxigenic strain of Aspergillus flavus. The rationale was that if an application during the early vegetative stage was as effective as the currently-labeled timing (late vegetative to tasseling), then growers would have greater flexibility in applying the material with a ground rig.

**Experimental design and methods:** The study was done in three locations in Texas: (1) A commercial field near Palacios, TX in Jackson county. The soil type is a Laewest clay, (2) The Stiles Foundation Farm (Texas AgriLIFE Extension Service) near Thrall, TX in Williamson county. The soil type is a Burleson clay, and (3) A commercial field near Dacosta, TX in Victoria county. The soil type is a Laewest clay.

For all three locations, each treatment was replicated four times in a latin square design and each replicate consisted of 8, 100-ft rows. Replicates were separated by a distance of 100 ft. There were four treatments: not treated (control) and Afla-Guard applied at three timings, by hand, to the tops of rows at a rate of 10 lb./A. The timings for the Jackson county field: V5-V6 (April 23, 2013), VT-R1 (May 13, 2013), and a late R1 (silks brown but moist) (May 21, 2013). The timings for the Williamson county field: V6 (May 12, 2013), V8 to V9 (May 24, 2013), and R1 (May 30, 2013). The timings for the Victoria county field: V6 to V8 (April 23, 2013), VT to R1 (May 14, 2013), and R1 to R2 (May 21, 2013).

Forty ears from the middle two rows of plots were hand harvested (Jackson county, July 5; Williamson county, July 6; Victoria county, July 5) and assessed for the incidence of visible *Aspergillus flavus* ear rot (Figure 1b). To determine toxigenicity of these ear colonies, conidia from ear rots were transferred to half-strength PDA slants (5 ml) using a sterile cotton swab and incubated 10 days. Aflatoxin was extracted from slants with 15 ml 80% methanol and further purified and analyzed using the Vicam Aflatest USDA FGIS procedure. To determine aflatoxin content of the bulk corn samples, ears were shelled and the 7 to 8 lb. samples from each plot were ground using a Romer mill (Romer Labs, Union, MO). Aflatoxin was quantified from 50-g subsamples using the Vicam Aflatest USDA FGIS procedure. Using a sub-sample of intact kernels, internal colonization by *A. flavus* was determined as follows. Kernels were surface-disinfested in 10% bleach for two min, rinsed twice with sterile water and incubated 4 days on

moist, sterile paper towels in 8 in. $\times$  8 in. aluminum trays sealed in Zip-loc plastic bags (Figure 1a). One hundred kernels were evaluated for each replicate.



Figure 1. A. Sporulation of *Aspergillus flavus* on surface-disinfested corn kernels. B. Visible ear rot caused by *A. flavus*.

Whole plots were harvested with the grower's combine (Jackson county, July 25; Williamson county, July 25; Victoria county, July 10). Samples for analysis were obtained by holding a bucket over the auger that moves the corn from the concave to the combine's grain bin. To reduce the possibility of cross-contamination, incoming grain was not collected for the first 30 seconds. Thereafter, only a portion of the harvest was continuously collected, allowing for sampling of the whole replicate (i.e. stream sampling). The amount of corn collected per plot ranged from 8-12 lb. Total aflatoxin was quantified and *A. flavus* colonization of intact kernels was done as previously described. Additionally, fumonisin was quantified using the Veratox fumonisin procedure (Neogen, Lansing, MI) for the Jackson county samples.Ear rot incidence was transformed before analysis of variance (square root of [incidence + 0.5]).

## **Results**:

There was hot, dry weather during and after flowering at all three locations. Aflatoxin levels were very low at all locations; the highest value at any location was 26 ppb. Aflatoxin in combine-harvested samples are shown in Tables 1, 3, and 5 for Jackson, Williamson and Victoria county fields, respectively. Aflatoxin in hand-harvested samples are shown in Tables 2, 4, and 6 for Jackson, Williamson, and Victoria county fields, respectively. Fumonisin levels at the Jackson county farm were 2 ppm or lower (Table 1).

At all three locations, the incidence of *A*. *flavus* ear rot was significantly (P=0.05) greater in one or more of the atoxigenic treatments and always in the earliest treatment, as compared with the control. The incidences of atoxigenic *A*. *flavus* isolated from ear rots are shown in Table 7.

| Treatment (10 | Aflatoxin (ppb)* |         | A. flavus in Ke | ernels, %* | Fumonisin (ppm)* |         |
|---------------|------------------|---------|-----------------|------------|------------------|---------|
| lb./A)        | Mean             | Range   | Mean            | Range      | Mean             | Range   |
| Control       | 4.6              | 0.9-9.2 | 5.7             | 4-8        | 1.9              | 0.8-3   |
| V5-V6         | 0.1              | 0-0.3   | 11              | 5-20       | 1.5              | 0.4-3.4 |
| VT to R1      | 0.3              | 0-1.1   | 5.7             | 0-11       | 2.3              | 0.6-4.5 |
| R1 (late)     | 2.2              | 0-3.5   | 11.5            | 8-14       | 2.0              | 1.3-2.4 |

Table 1. Jackson county: combine-harvested plot samples.

\*Values are the means of four replicates.

| Table 2. Jackson coun | ty: 40 hand-harvested ear samples | • |
|-----------------------|-----------------------------------|---|
|-----------------------|-----------------------------------|---|

| Treatment (10 | Aflatoxin (ppb)* |       | Ear rot %** |        | A. flavus in Kernels, % |       |
|---------------|------------------|-------|-------------|--------|-------------------------|-------|
| lb./A)        | Mean             | Range | Mean        | Range  | Mean                    | Range |
| Control       | 4.5              | 0-11  | 15 b        | 2.3-35 | 1                       | 0-2   |
| V5-V6         | 0.8              | 0-2.9 | 45 a        | 24-58  | 8.2                     | 6-12  |
| VT to R1      | 0.3              | 0-0.7 | 44 a        | 29-51  | 6.5                     | 1-19  |
| R1 (late)     | 5.2              | 0-17  | 19 b        | 17-23  | 4.7                     | 1-15  |

\*Values are the means of four replicates. \*\*Means followed by different letters are significantly different (P=0.05) using an analysis of variance of transformed data. Non-transformed means shown.

| Treatment (10 | Aflatoxin (ppb)* |       | A. flavus in Kernels, % |       |  |
|---------------|------------------|-------|-------------------------|-------|--|
| lb./A)        | Mean             | Range | Mean                    | Range |  |
| Control       | 3.9              | 0-14  | 3.7                     | 1-6   |  |
| V6            | 0                | 0     | 4.2                     | 1-9   |  |
| V8 to V9      | 6.9              | 0-26  | 5.5                     | 1-9   |  |
| R1            | 1                | 0-4   | 3.7                     | 2-6   |  |

Table 3. Williamson county: combine harvested plot samples

\*Values are the means of four replicates.

Table 4. Williamson county: 40 hand-harvested ears.

| Treatment (10 | Aflatoxin (ppl | o)*    | Ear rot %** |       | A. flavus in Kernels, % |       |
|---------------|----------------|--------|-------------|-------|-------------------------|-------|
| lb./A)        | Mean           | Range  | Mean        | Range | Mean                    | Range |
| Control       | 4.8            | 0-18   | 1.3 b       | 0-5   | 2                       | 0-3   |
| V6            | 6.6            | 0-26   | 11 a        | 3-22  | 12                      | 10-15 |
| V8 to V9      | 4.3            | 0.4-15 | 12 a        | 5-15  | 6.7                     | 0-12  |
| R1            | 5.8            | 0-14   | 8.4 a       | 3-17  | 5.5                     | 1-10  |

\*Values are the means of four replicates. \*\*Means followed by different letters are significantly different (P=0.05) using an analysis of variance of transformed data. Non-transformed means shown.

| Treatment (10 | Aflatoxin (ppb)* |       | A. flavus in Kernels, % |       |  |  |
|---------------|------------------|-------|-------------------------|-------|--|--|
| lb./A)        | Mean             | Range | Mean                    | Range |  |  |
| Control       | 3.7              | 0-11  | 6.7                     | 2-14  |  |  |
| V6 to V8      | 1                | 0-3.7 | 13.2                    | 8-23  |  |  |
| VT to R1      | 0.1              | 0-0.2 | 8.2                     | 2-15  |  |  |
| R1 to R2      | 2                | 0-8   | 5.5                     | 0-10  |  |  |

Table 5. Victoria county: combine-harvested plot samples.

\*Values are the means of four replicates.

#### Table 6. Victoria county: 40 hand-harvested ears.

| Treatment (10 | Aflatoxin (p | Aflatoxin (ppb)* |       | Ear rot, %** |      | ernels, % |
|---------------|--------------|------------------|-------|--------------|------|-----------|
| lb./A)        | Mean         | Range            | Mean  | Range        | Mean | Range     |
| Control       | 0.1          | 0-0.2            | 3 b   | 0-4.9        | 3.5  | 1-8       |
| V6 to V8      | 0.3          | 0-1              | 22 a  | 13-38        | 12.5 | 3-21      |
| VT to R1      | 0.2          | 0-0.7            | 3.7 b | 0-7.5        | 6.2  | 1-9       |
| R1 to R2      | 2.5          | 0-9.2            | 2.4 b | 0-4.7        | 4    | 2-9       |

\*Values are the means of four replicates. \*\*Means followed by different letters are significantly different (P=0.05) using an analysis of variance of transformed data. Non-transformed means shown.

| Treatment        | Jackson   |          | Williamson |          | Victoria |                  |
|------------------|-----------|----------|------------|----------|----------|------------------|
|                  | % Total # |          | %          | Total #  | %        | Total # isolates |
|                  |           | isolates |            | isolates |          |                  |
| Control          | 91.6      | 24       | 50         | 2        | 100      | 5                |
| All 3 atoxigenic | 96.4      | 28       | 93.7       | 32       | 91.6     | 24               |

Table 7. Proportion of atoxigenic isolates from hand-harvested ears.

## **Discussion:**

At all three locations, the levels of aflatoxin in the controls were below regulatory thresholds and at these locations, application of an atoxigenic strain would have been unnecessary. However, the study showed that at all three locations, the atoxigenic strain did colonize ears, as seen by the higher levels of *Aspergillus flavus* rot at the tips of ears with the earliest application timings V5 to V8. The higher level of colonization with the earliest application could be a function of more time to sporulate and more favorable conditions for sporulation (more rain events or dew periods), or both. The lack of toxigenicity of all the Victoria *A. flavus* isolates and most of the Jackson *A. flavus* isolates from the controls (Table 7) suggests that there was some cross-contamination from plots treated with the atoxigenic strain. Movement of spores from the atoxigenic treatments to the controls need to be monitored in future experiments to ensure correct interpretation of the results. Such movement could underestimate the effectiveness of an atoxigenic treatment.

## Acknowledgements:

We appreciate Steve Stuhrenberg and Duane Kainer for providing the corn fields for the experiments and for assistance with harvesting.

# 2013 Trial of Topguard Formulations for Control of Phymatotrichopsis Root Rot of Cotton

## Thomas Isakeit, Professor and Extension Plant Pathologist, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX Archie Abrameit, Manager & Extension Specialist, Stiles Farm Foundation, Thrall, TX Gaylon Morgan, Professor and Extension Agronomist, Department of Crop and Soil Science, Texas A&M University, College Station, TX

The objective of this study was to compare different formulations of flutriafol and different methods of application for control of cotton root rot.

**Experimental Design and Methods:** The experiment was done at the Texas AgriLife Extension (Stiles) Farm, Williamson County, TX (N 30° 36.244' W 97° 17.271'). The soil is a Burleson clay (Fine, montmorillonitic thermic Udic Pellusterts). The row spacing was 38 in. and the field was dryland.

The field was planted April 26, 2013 with 'Phytogen 375' at a population of 43,000/A. Seed was planted into moisture at 2.25 in. deep and a soil temperature of 72°F. There were four replicates per treatment arranged in a complete randomized block design. Each replicate was 4 rows  $\times$  60 ft, with 10-ft alleys along rows. The two middle rows of each replicate were treated.

For the in-furrow application, which was made during planting, a Schaffert Rebounder Seed Cover with a Y splitter was used. The fungicide was applied using CO<sup>2</sup> pressurization at 20 psi and a #45 orifice in the line to give an output volume of 11 gpa. The T-band application was made using a Teejet XR8003VS nozzle, spraying a 4-in-wide band, with a pressure of 22 psi and a volume of 7.3 gpa. The over-spray was made on June 4. A Teejet XR80015VS nozzle was used to apply a 4-in band on the center of the row at 30 psi and a volume of 4 gpa.

A Watermark Soil Moisture Sensor (range:0-200 centibars), buried 2 in., was used to monitor soil moisture during the experiment. The soil was saturated, or nearly so, as a result of rain on these dates: May 9-11, May 16, May 24-26, June 2, July 15-17, July 20-22, July 27, and Aug. 14.

Plots were evaluated for disease symptoms on Aug. 7 and Aug. 20. The plots were harvested Sept. 11 with a stripper.

#### **Results and Discussion:**

There was no apparent phytotoxicity noted in any of the treatments. The first significant rain was about two weeks after planting, when many, but not all plants had emerged. There were three additional rain showers in May and June, prior to the over-spray. The next rain was 41 days following the over-spray. A low incidence of disease was first noted June 15. Plants were flowering June 29 and there was more root rot symptoms, but plants were also showing water stress.

There was no significant (P=0.05) reduction in disease incidence with any of the flutriafol treatments, nor was there an effect on yield (Table 1). The disease pressure was too low to allow any substantial comparison of treatments.

Table 1. Effect of flutriafol formulations (Topguard 1.04 & Topguard Terra 4.17) applied at different rates and with different methods, at different timings, on Phymatotrichopsis root rot (% incidence) and cotton yield  $^{1}$ .

| Formulation (lb. a.i./gal), Rate        | % Disease -            | % Disease -            | Lint Yield | Seed Yield |
|-----------------------------------------|------------------------|------------------------|------------|------------|
| (pt/A), Method, and Timing <sup>2</sup> | 103 DAP <sup>2,3</sup> | 126 DAP <sup>2,3</sup> | (bales/A)  | (lb./A)    |
| None (control)                          | 31                     | 49                     | 1.47       | 845        |
| 1.04, 1, T-band, at planting            | 19                     | 37                     | 1.40       | 814        |
| 1.04, 2, T-band, at planting            | 19                     | 36                     | 1.31       | 758        |
| 1.04, 1, in-furrow, at planting         | 7                      | 11                     | 1.45       | 820        |
| 1.04, 2, in-furrow, at planting         | 18                     | 40                     | 1.28       | 762        |
| 4.17, 0.25, T-band, at planting         | 18                     | 38                     | 1.32       | 775        |
| 4.17, 0.5, T-band, at planting          | 16                     | 29                     | 1.30       | 710        |
| 4.17, 0.25, in-furrow, at planting      | 20                     | 34                     | 1.20       | 680        |
| 4.17, 0.5, in-furrow, at planting       | 13                     | 30                     | 1.19       | 689        |
| 1.04, 2, over-spray, 39 DAP             | 27                     | 47                     | 1.20       | 725        |
| 1.04, 1, over-spray, 39 DAP             | 23                     | 49                     | 1.27       | 721        |
| 4.17,0.5, over-spray, 39 DAP            | 25                     | 39                     | 1.15       | 677        |
| 4.17, 0.25, over-spray, 39 DAP          | 21                     | 35                     | 1.43       | 833        |

<sup>1</sup>Mean of four replicates. Treatment means were not significantly different from the control at P=0.05<sup>2</sup>DAP=days after planting.

<sup>3</sup>The analysis of variance was done using the number of disease plants per plot; % disease incidence is shown.

# Wheat and Oat Variety Performance in Central Texas

#### Clark Neely, Small Grains and Oilseed Extension Specialist Daniel Hathcoat, Small Grains and Oilseed Program Specialist

#### **INTRODUCTION**

The Texas A&M AgriLife Extension Service has overseen the wheat and oat variety trial in Williamson County for four consecutive years and is part of the statewide network of uniform variety trials. Local variety trials are important in testing adaptation of new variety releases and comparing them to already established lines used by producers. Data collection for multiple years and multiple sites is critical for appropriate variety selection. Environmental conditions vary each year and certain characteristics may be advantageous under certain conditions, but are not representative of the site on average. New varieties can offer better yield and more disease and insect resistance options for producers as well. Many producers use this information to decide which varieties to plant each season. Variety selection not only influences yield potential, but also other management practices such as grazing, fertility, and insecticide and fungicide applications.

#### **METHODS & MATERIALS**

In 2014, this trial included 20 hard red winter wheat (HRWW) and eight oat varieties. Wheat and oats were planted on November 20 and harvested on June 3, 2014. Grain yield, seed moisture, and test weight data were collected and analyzed as a four replicate, randomized complete block design in ARM 9 using ANOVA and LSD for mean separation.

#### RESULTS

Summarized data for the HRWW and oat varieties are presented in Tables 1 and 2, respectively. Tables include recorded yields in 2011, 2012, 2013, and the 3-year average along with test weights. 2014 data will be summarized and included in time for the presentation. Moderate stripe rust levels in 2014 may have a noticeable impact on variety yield performance. Yield was considerably lower in 2011 due to severe drought conditions that year. TAM 304, Duster, Billings, Gallagher, Shocker, Fannin, Armour, and Ruby Lee were statistically all top yielding varieties in 2013; however, Billings ranks the highest on the 3-year average. The only significant difference in test weights for 2013 was a very low weight recorded for Garrison, which was the lowest yielding variety as well. TAMO 411 is a new oat variety release that has performed well at this location the past two years. Statistically, TAMO 411 along with a new entry Harrison, yielded the same in 2013 as Horizon 201, which was the highest yielding oat over the 3-year average.

#### DISCUSSION

This information is important in highlighting yield-stability of varieties over years. When developing small grains management practices, selection of multiple varieties is a recommended practice in order to spread out risk due to inherent environmental variability. For more information on variety performance across the state, please visit our website at http://varietytesting.tamu.edu/wheat.

# ACKNOWLEDGEMENTS

The authors would like to thank Archie Abrameit and others at the Stiles Farm Foundation for their participation in land preparation and cooperation in making this a successful trial.

|                      | 2013                |     | 2012                |     | 2011                |     | 3-Year  | 2013        |   |
|----------------------|---------------------|-----|---------------------|-----|---------------------|-----|---------|-------------|---|
| Variety <sup>+</sup> | Yield               |     | Yield               |     | Yield               |     | Average | Test Weight |   |
|                      | (bu/a) <sup>‡</sup> |     | (bu/a) <sup>‡</sup> |     | (bu/a) <sup>‡</sup> |     | (bu/a)  | (lbs/bu)    |   |
| Billings             | 54.5                | а   | 70.7                | а   | 21.8                | c-g | 49.0    | 60.0        | а |
| TAM 304              | 55.1                | а   | 57.5                | ab  | 24.7                | bc  | 45.8    | 57.7        | а |
| Fannin               | 51.6                | ab  | 55.5                | abc | 22.2                | c-g | 43.1    | 59.5        | а |
| TAM 203              | 39.4                | c-f | 63.7                | а   | 25.9                | ab  | 43.0    | 57.6        | а |
| Duster               | 54.9                | а   | 43.8                | bcd | 24.0                | bcd | 40.9    | 60.0        | а |
| Greer                | 36.6                | ef  | 58.7                | ab  | 24.8                | abc | 40.0    | 56.4        | а |
| TAM 401              | 35.3                | efg | 61.6                | ab  | 19.8                | e-h | 38.9    | 56.2        | а |
| Coronado             | 20.4                | h   | 53.4                | abc | 24.5                | bc  | 32.8    | 60.7        | а |
| Fuller               | -                   |     | 64.1                | а   | 23.1                | b-e | -       | -           |   |
| Gallagher            | 53.8                | а   | -                   |     | -                   |     | -       | 59.8        | а |
| Shocker              | 53.0                | а   | -                   |     | -                   |     | -       | 58.9        | а |
| Armour               | 48.2                | abc | -                   |     | -                   |     | -       | 57.2        | а |
| Ruby Lee             | 47.3                | abc | -                   |     | -                   |     | -       | 59.4        | а |
| Cedar                | 46.7                | a-d | -                   |     | -                   |     | -       | 59.2        | а |
| TAM 305              | 42.9                | b-e | -                   |     | -                   |     | -       | 60.0        | а |
| WB-4458              | 37.5                | def | -                   |     | -                   |     | -       | 58.0        | а |
| Santa Fe             | 33.3                | fg  | -                   |     | -                   |     | -       | 58.6        | а |
| Doans                | 32.0                | fg  | -                   |     | -                   |     | -       | 58.7        | а |
| lba                  | 31.6                | fg  | -                   |     | -                   |     | -       | 56.0        | а |
| Jackpot              | 26.2                | gh  | -                   |     | -                   |     | -       | 58.7        | а |
| Garrison             | 10.6                | i   |                     |     |                     |     |         | 43.9        | b |
| LSD (P = .05)        | 9.3                 |     | 18.4                |     | 3.5                 |     | -       | 9.9         |   |
| Std Dev.             | 6.6                 |     | 12.8                |     | 2.4                 |     | -       | 7.0         |   |
| CV                   | 16.2                |     | 23.5                |     | 11.2                |     | -       | 12.1        |   |
| Grand Mean           | 40.5                |     | 54.7                |     | 21.9                |     | -       | 57.8        |   |

Table 1: Hard Red Winter Wheat variety yields for 2011, 2012, 2013 and the 3-year yield average at the Stiles Farm.

<sup>†</sup>Ranked according to 3-year average.

<sup>‡</sup>Letters denote significant differences in yield.

|                     | 2013                |   | 2012                |    | 2011                |    | 3-Year  | 2012        |
|---------------------|---------------------|---|---------------------|----|---------------------|----|---------|-------------|
| $Variety^{\dagger}$ | Yield               |   | Yield               |    | Yield               |    | Average | Test Weight |
|                     | (bu/a) <sup>‡</sup> |   | (bu/a) <sup>‡</sup> |    | (bu/a) <sup>‡</sup> |    | (bu/a)  | (lbs/bu)    |
| Horizon 201         | 56.6                | а | 84.7                | а  | 37.1                | ab | 59.5    | 33.1        |
| Horizon 270         | 38.8                | b | 85.6                | а  | 44.7                | а  | 56.4    | 35.0        |
| RAM 99016           | 37.5                | b | 71.8                | ab | 31.5                | bc | 46.9    | 36.0        |
| TAMO 406            | 41.0                | b | 58.9                | bc | 28.6                | С  | 42.8    | 35.8        |
| TAMO 606            | 37.2                | b | 43.3                | d  | 35.6                | bc | 38.7    | 31.5        |
| Bob                 | 36.8                | b | 46.1                | cd | 28.7                | С  | 37.2    | 32.9        |
| TAMO 411            | 50.2                | а | 85.5                | а  | -                   |    | -       | 36.6        |
| Harrison            | 49.8                | а | -                   |    | -                   |    | -       | -           |
| LSD (P = .05)       | 7.4                 |   | 15.6                |    | 8.3                 |    | -       | 1.4         |
| Std Dev.            | 5.0                 |   | 11.0                |    | 5.5                 |    | -       | 1.0         |
| CV                  | 11.6                |   | 22.4                |    | 16.1                |    | -       | 1.9         |
| Grand Mean          | 43.5                |   | 49.1                |    | 34.4                |    | -       | 34.4        |

Table 2: Oat variety yields for 2011, 2012, 2013 and the 3-year yield average at the Stiles Farm.

<sup>†</sup>Ranked according to 3-year average.

<sup>‡</sup>Letters denote significant differences in yield.

# Malt Barley Variety Performance in Central Texas

## Clark Neely, Small Grains and Oilseed Extension Specialist Daniel Hathcoat, Small Grains and Oilseed Program Specialist Russell Sutton, Small Grains Research Scientist

#### **INTRODUCTION**

At one point in time, barley was grown on nearly 600,000 acres in Texas, but acres have steadily decreased since then to under 20,000 acres by 1999 (final year reported by NASS). As acres decreased in the state, so did active barley research, breeding and new varietal development in Texas. The last variety released by Texas A&M AgriLife was 'TAMbar 501' in 2004. Recent interest by producers and consumers in locally grown ingredients has revealed a need for the continuation of barley research in Texas. Until now, Texas has not been considered a malting barley region, but the development of a local malting facility and interest by in-state breweries for local ingredients provides a possible market for locally grown malting barley. Therefore, variety testing of new barley cultivars under Texas environments is needed to identify adapted varieties.

#### **METHODS & MATERIALS**

In 2012, a multi-location malting barley trial was conducted at Castroville, McGregor, and Thrall (Stiles Farm), TX to evaluate commercial malting barley varieties. Both spring and winter 2-row and 6-row varieties were evaluated for yield, test weight, and protein. Both spring and winter barley types were planted simultaneously in November. Due to same planting dates, spring types matured quicker than winter types in the spring and had reached maturity at the time of harvest. Because barley harvest occurred when wheat was harvested, most winter lines were too late and green to harvest. In fall 2013, winter lines were planted October 24 and 25 in Thrall and Reisel, TX, respectively to achieve quicker maturation in the spring. Spring lines were planted December 5 in Thrall and Riesel, while Castroville was planted December 17. In spring 2014, Castroville, Thrall, and Riesel locations were harvested May 20, June 3, and June 4, respectively. 2014 results will be included at time of presentation.

#### RESULTS

CDC Copeland, CDC Kindersley and Pinnacle were all statistically in the top yielding group at both Thrall and Castroville for spring 2-row barleys (Table 1). Endeavor was an early maturing winter barley that consistently yielded well at both Thrall and McGregor (Table 2). VA09B-34, VA10B-43, and Thoroughbred yielded comparatively well to Endeavor, but were only planted in McGregor. Coefficient of variation was relatively high for winter barleys at both locations and thus results are inconclusive.

At McGregor and Castroville locations, all varieties except Pinnacle had protein levels above optimal levels (10.5-13.0%) for malting. CDC Kindersley, Pinnacle, and Endeavor all had lower than desirable protein content, while Maja was slightly above the 13% threshold at Thrall. Protein content can be controlled to some degree by fertility, which explains consistently high protein levels at McGregor and Castroville, however varietal differences were significant among spring barleys. Out of the spring barleys, Pinnacle contained the lowest protein levels at both McGregor and Castroville, which would allow producers to apply more nitrogen fertilizer to

maximize yields. Other varieties may sacrifice yield by lowering fertility in order to maintain acceptable protein levels.

Overall, test weights were low for all 2-row varieties except Conlon at Castroville (48.7 lb/bu). Conlon also had the highest test weight at McGregor (47.3 lb/bu), but did not meet the U.S. malt barley grade for 2-row barley (48.0 lb/bu). All three Virginia experimental lines and Thoroughbred were the only 6-row barleys tested that were harvested and met the U.S. No 3 malting grade (43.0 lb/bu).

Bird-cherry oat aphids were the primary pest observed in barley plots. In addition to physical plant injury from aphid feeding, these insects can vector barley yellow, which can significantly reduce yields, particularly if early fall infestations occur. Early season scouting and control of these pests is advised. Fungal diseases such as barley leaf, stripe, and stem rust were largely absent from trials, but have been known to reach economic thresholds in Texas.

#### DISCUSSION

For producers seriously considering malting barley, irrigation may be needed to maintain consistent high quality standards required by the malting industry. This project is on-going and additional years of data will shed light on the most consistent barley varieties for this region. Successful malting barley varieties could diversify cropping systems and meet a niche market that could provide economic benefits for producers, malters, and brewers in the state of Texas.

#### ACKNOWLEDGEMENTS

The authors would like to thank Archie Abrameit and others at the Stiles Farm Foundation for their participation in land preparation and cooperation in making this a successful trial. Funding was provided by Blacklands Malt.

|                 |                 | Thrall              |                | $Castroville^{\dagger}$ |                     |                |  |
|-----------------|-----------------|---------------------|----------------|-------------------------|---------------------|----------------|--|
| Variety         | Yield<br>(bu/a) | Test Wt.<br>(lb/bu) | Protein<br>(%) | Yield<br>(bu/a)         | Test Wt.<br>(lb/bu) | Protein<br>(%) |  |
| CDC Meredith    | 62.8            | 44.6                | 12.1           | 16.0                    | 40.9                | 15.5           |  |
| CDC Copeland    | 62.0            | 45.8                | 11.3           | 25.9                    | 44.7                | 14.0           |  |
| CDC Kindersley  | 54.3            | 45.7                | 9.9            | 29.2                    | 44.7                | 14.5           |  |
| Pinnacle        | 51.4            | 44.8                | 9.7            | 21.1                    | 42.9                | 12.0           |  |
| AC Metcalfe     | 49.7            | 45.6                | 11.4           | 17.9                    | 42.6                | 15.7           |  |
| Conlon          | 43.1            | 47.3                | 12.3           | 19.7                    | 48.7                | 13.4           |  |
| LSD (P=.01)     | 18.6            | 1.9                 | 1.2            | 9.1                     | 3.9                 | 0.9            |  |
| CV <sup>†</sup> | 15.3            | 1.9                 | 7.3            | 18.7                    | 3.9                 | 4.1            |  |
| Grand Mean      | 53.9            | 45.7                | 11.1           | 21.6                    | 44.1                | 14.2           |  |

**Table 1.** Spring (2-row) malt barley variety trial results from Thrall and Castroville, TX in 2013.

<sup>†</sup> Castroville received hail prior to harvest, which resulted in lower yields and possibly skewed results.

|              |                 | $\mathrm{Thrall}^\dagger$ |                |              |                     |                |
|--------------|-----------------|---------------------------|----------------|--------------|---------------------|----------------|
| Variety      | Yield<br>(bu/a) | Test Wt.<br>(lb/bu)       | Protein<br>(%) | Yield (bu/a) | Test Wt.<br>(lb/bu) | Protein<br>(%) |
| Endeavor*    | 54.3            | 46.8                      | 9.4            | 68.2         | 46.6                | 14.4           |
| TAMbar 501   | 34.6            |                           | 11.4           | 37.1         |                     | 13.5           |
| Maja         | 29.0            | 37.6                      | 13.1           |              |                     |                |
| Charles*     | 27.2            | 41.4                      | 11.9           | 27.6         |                     |                |
| VA09B-34     |                 |                           |                | 72.2         | 47.5                | 13.8           |
| VA10B-43     |                 |                           |                | 68.9         | 44.7                | 15.1           |
| Thoroughbred |                 |                           |                | 68.8         | 44.7                | 14.1           |
| VA09B-29     |                 |                           |                | 57.8         | 44.0                | 14.1           |
| Saturn       |                 |                           |                | 48.0         | 41.7                | 15.5           |
| LSD (P=.05)  |                 |                           |                |              |                     |                |
| CV           |                 |                           |                |              |                     |                |
| Mean         |                 |                           |                |              |                     |                |

**Table 2.** Winter (6-row) malt barley variety trial results from Thrall and McGregor, TX in 2013.

<sup>†</sup> Locations were harvested at wheat harvest, which favored early maturing winter barleys. Additional varieties were planted, but were too green for harvest.

\* Winter 2-row barley variety.

# **Optimizing Grain Sorghum Seeding Rates in the Texas Blacklands**

Ronnie Schnell, Assistant Professor and Extension Cropping Systems Specialist Ryan Collet, County Extension Agent, Hill County Jon Gersbach, County Extension Agent, Milam County Russell Sutton, Research Scientist Tony Provin, Extension Specialist and Laboratory Director

> Texas A&M AgriLife Extension Service Department of Soil and Crop Sciences College Station, Texas

#### Background

Optimum seeding rates have been investigated and discussed extensively in the High Plains and Gulf Coast of Texas. Yet, many producers in the central and northern Blacklands of Texas are using plant populations above optimum levels. This can exacerbate soil moisture limitations and result in lower yields, stalk rot diseases and lodging. Selection of optimum seeding rates is further complicated by spatial and temporal variability of pre-season soil moisture and in-season precipitation. We initiated a study, using large, replicated strips in collaboration with multiple growers throughout the Texas Blacklands to evaluate grain sorghum seeding rates

The first goal of this project is to optimize and develop decision aids for selecting seeding rates for the central and northern Blacklands of Texas. Variation in depth of topsoil, stored soil moisture and in-season precipitation creates challenges for managing seeding rates for grain crops within the region. Similar challenges exist in other production regions of Texas. While growers recognize grain sorghums ability to withstand heat and drought stress compared to other crops, improper seeding rates often results in poor grain yield due to insufficient soil moisture, disease and lodging issues. Current AgriLife recommendations for grain sorghum seeding rates in the Blacklands are from 70,000 to 80,000 seeds per acre. However, this could be too high for certain soil and weather conditions. Growers are advised to reduce seeding rates when poor soil moisture conditions are present or when below average rainfall is expected during the current growing season. Yet, decisions about seeding rates based on current soil moisture levels and projected weather patterns are largely subjective. By monitoring soil moisture and weather conditions before and during the crop season will provide key information for interpreting the results of plant population trials. Supplemental soil moisture and weather data will be an important component of models used to describe grain sorghum yield response to increasing seeding rates. Using advanced models to develop decision-making tools for growers to select seeding rates will be useful for producers in the Blacklands as well as other regions affected by variability in soil and weather conditions.

#### **Goals and Objectives**

1. Measure grain sorghum yield in response to increasing seeding rates and soil moisture conditions in the central and northern Blacklands of Texas.

#### **Methods and Activities**

Grain sorghum seeding rate trials were imposed at multiple field sites in collaboration with local growers in five areas of the central and northern Blacklands (Stile's Farm - Thrall, Buckholts, Hillsboro (2), and Farmersville). At each field, treatments were arranged in a randomized complete block design with three replications of five treatments. Treatments comprised five seeding rates (35,284, 51,455, 65,340, 81,675 and 94,090 seeds per acre) at all locations on 30" centers and five seeding rates (35,061, 51,584, 64,480, 80,140 and 93,496 seeds per acre) at Thrall (38" centers). Plots were four rows wide and extended the entire length of row for each selected field (near 1,000 ft). Prior to planting, deep soil samples (12, 24, 36, 48 inch depth) were collected from each block to quantify soil moisture at planting and will be collected again following harvest. Soil moisture sensors and tipping rainfall buckets wree connected to a data logger and installed at each site. Temperature and other meteorological data will be obtained from the nearest weather station. Following planting, plots were maintained according to AgriLife recommendations for the duration of the project. Plots will be harvested, weighed, and then moisture and test weight will be measured.

#### Results

All five locations were planted beginning March 14 in Thrall and was completed by April 11 (Farmersville). Planting moisture was good at all locations except Buckholts. Plant emergence at Thrall averaged 90% of the target seeding rate (Figure 1). Similar results were observed at other locations. Total and plant available moisture within the soil profile at planting did differ among locations. The Buckholts location had 2.15 inches of plant available water in the 0-12 inch soil depth compared to 2.69 inches at the Farmersville location. Soil profile moisture was generally greater for northern locations compared to southern locations, reflecting rainfall patterns during the winter and early spring. In-season precipitation will be monitored and soil moisture at harvest measured. Harvest is expected to begin late July.

#### Acknowledgment

This work is supported by the Texas Grain Sorghum Producers Board, Texas A&M AgriLife Research and Texas A&M AgriLife Extension.

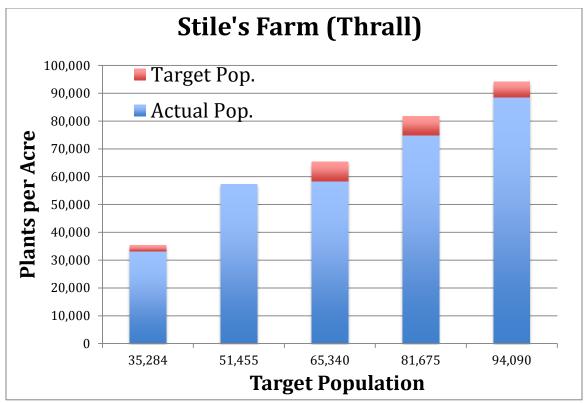



Figure 1. Target seeding rates and resulting plant populations at Stiles Farm near Thrall.

# **Managing Potassium Fertility for Corn Production**

# Dennis Coker, Ph.D., Extension Program Specialist Mark McFarland, Ph.D., Professor and Extension State Soil Fertility Marty Jungman, Hill & McLennan Extension Agent-IPM Ryan Collett, Hill County Extension Agent-Ag

#### Introduction

Adequate potassium (K) nutrition is integral to water relations, physiological function of chlorophyll, as well as vegetative and reproductive growth in corn. The second-year studies below were conducted to confirm that current Extension Laboratory recommendations based on soil test results are indicative of crop requirements assuming a representative yield goal and favorable growing conditions. Results showed that the addition of K fertilizer where none was recommended by current Extension guidelines did not improve yield.

#### Objective

Assess corn response to increasing rate of liquid K subsurface, band applied or granular K surface broadcast applied and shallow incorporated.

#### **Materials & Methods**

Two granular K studies were established in fields approximately 0.5 miles apart in Hill County. The liquid K study was located in the southernmost of the two fields. Prior to planting, composite soil samples were collected to a six-inch depth from across each of the three study areas and analyzed by the Texas A&M AgriLife Extension Service Soil, Water & Forage Testing Laboratory. In late December 2012, the producer applied and incorporated 14 lbs./A of nitrogen, 31 lbs./A of phosphate and 6 lbs./A sulfur across both fields. After crop emergence, 106 lbs./A of nitrogen was sidedress applied across all study areas by the grower. The total amounts of nitrogen and phosphorus applied were adequate for corn grain production based on soil test recommendations.

Wheat was the previous crop grown at all thee study locations. All studies were planted to corn variety DKC 64-69 by the producer on February 27 with a row spacing of 30 inches. Experimental design of each study was a randomized complete block. Treated plots were four rows wide by 65 feet long in the liquid K study and four rows wide by 20 feet long in the granular K studies. In all studies, four treatments were replicated four times, for a total of 16 plots.

Treatments in the granular K studies were applied by hand and incorporated on December 14, 2012, whereas, liquid K was subsurface, knife injected at the second leaf stage (March 22). Tillage, herbicide, and other cultural inputs were conducted according to standard practices used by the grower. Corn ears were harvested from ten feet of the middle two rows of plots in all three studies on July 26. Samples were shelled, grain weighed, and grain test weight and moisture determined.

#### **Results and Discussion**

Soil samples collected from the 'northern' and 'southern' fields showed residual potassium levels of 239 and 183 ppm, which are greater than the laboratory critical level of 125 ppm. Thus, K fertilizer would not be recommended. Consistent with that recommendation, there were no statistically significant differences between treatments for grain yield, test weight, or grain moisture for any of the three studies (Tables 1-3).

| Tre    | atments               | Measurements at Final Harvest               |             |          |  |  |  |  |
|--------|-----------------------|---------------------------------------------|-------------|----------|--|--|--|--|
| Source | K <sub>2</sub> O Rate | Grain Yield <sup><math>\dagger</math></sup> | Test Weight | Moisture |  |  |  |  |
|        | (lb/A)                | (bu/A)                                      | (lb/bu)     | (%)      |  |  |  |  |
| None   | 0                     | 145 <sup>§</sup>                            | 57.1        | 12.3     |  |  |  |  |
| 0-0-15 | 30                    | 144                                         | 56.7        | 12.4     |  |  |  |  |
| 0-0-15 | 60                    | 149                                         | 57.4        | 12       |  |  |  |  |
| 0-0-15 | 90                    | 146                                         | 56.9        | 12.4     |  |  |  |  |
| P>(F)  |                       | 0.7419                                      | 0.0561      | 0.341    |  |  |  |  |
| CV     |                       | 4.31                                        | 0.55        | 2.39     |  |  |  |  |

Table 1. Grain yield, test weight, and moisture response of corn to applied rate of liquid potash on the Schronk Farm, Hill County, TX, 2013.

<sup>†</sup>Grain yield corrected to 15.5% moisture.

<sup>§</sup>Means within a column were not different according to ANOVA F Test ( $P \le 0.05$ ).

| Treatm              | nents                 | Mea                                         | Measurements at Final Harvest |          |  |  |  |  |  |
|---------------------|-----------------------|---------------------------------------------|-------------------------------|----------|--|--|--|--|--|
| Source <sup>‡</sup> | K <sub>2</sub> O Rate | Grain Yield <sup><math>\dagger</math></sup> | Test Weight                   | Moisture |  |  |  |  |  |
|                     | (lb/A)                | (bu/A)                                      | (lb/bu)                       | (%)      |  |  |  |  |  |
| None                | 0                     | 122 <sup>§</sup>                            | 54.4                          | 11.7     |  |  |  |  |  |
| 0-0-60              | 30                    | 120                                         | 53.9                          | 11.6     |  |  |  |  |  |
| 0-0-22-11-22        | 30                    | 115                                         | 54.1                          | 11.3     |  |  |  |  |  |
| 0-0-60              | 60                    | 127                                         | 54.9                          | 11.6     |  |  |  |  |  |
| P>(F)               |                       | 0.5566                                      | 0.1352                        | 0.2499   |  |  |  |  |  |
| CV                  |                       | 9.36                                        | 1.07                          | 2.16     |  |  |  |  |  |

Table 2. Grain yield, test weight, and moisture response of corn to applied rate of granular potash at the southern site, Shronk Farm, Hill County, TX, 2013.

<sup>†</sup>Grain yield corrected to 15.5% moisture.

<sup>‡</sup>Broadcast incorporated granular sources to a one-inch depth.

<sup>§</sup>Means within a column were not different according to ANOVA F Test (P≤0.05).

| Treatm              | ients                 | Mea                                         | Measurements at Final Harvest |          |  |  |  |  |  |
|---------------------|-----------------------|---------------------------------------------|-------------------------------|----------|--|--|--|--|--|
| Source <sup>‡</sup> | K <sub>2</sub> O Rate | Grain Yield <sup><math>\dagger</math></sup> | Test Weight                   | Moisture |  |  |  |  |  |
|                     | (lb/A)                | (bu/A)                                      | (lb/bu)                       | (%)      |  |  |  |  |  |
| None                | 0                     | $108^{\$}$                                  | 55.8                          | 11.7     |  |  |  |  |  |
| 0-0-60              | 30                    | 120                                         | 55.9                          | 11.5     |  |  |  |  |  |
| 0-0-22-11-22        | 30                    | 113                                         | 56                            | 11.1     |  |  |  |  |  |
| 0-0-60              | 60                    | 119                                         | 56.2                          | 11.2     |  |  |  |  |  |
| P>(F)               |                       | 0.2784                                      | 0.8481                        | 0.0959   |  |  |  |  |  |
| CV                  |                       | 8                                           | 1.03                          | 2.44     |  |  |  |  |  |

Table 3. Grain yield, test weight, and moisture response of corn to applied rate of granular potash at the northern site, Shronk Farm, Hill County, TX, 2013.

<sup>†</sup>Grain yield corrected to 15.5% moisture.

<sup>‡</sup>Broadcast incorporated granular sources to a one-inch depth.

<sup>§</sup>Means within a column were not different according to ANOVA F Test (P≤0.05).

These results indicate current K fertilizer recommendations provided by the Extension Soil Testing Laboratory are appropriate for rain-fed corn production. However, due to seasonal variation in climatic/growing conditions and declining amounts of K present within the upper soil profile in some areas, additional studies are needed to assess soil test levels near the current critical level of 125 ppm K.

#### Acknowledgements

The authors would like to extend their appreciation to Mr. Rodney Schronk for donating land, equipment and time in order that these studies could be conducted. The United Agricultural Cooperative based in El Campo, TX is recognized for their donation of liquid potash fertilizer.

# 2013 Stiles Farm Corn, Sorghum, and Cotton Herbicide Demonstrations

#### Dr. Paul A. Baumann, Professor and Extension Weed Specialist Mr. Matt E. Matocha, Extension Program Specialist Mr. Josh McGinty, Ph.D. Extension Graduate Assistant Ms. Morgan Mettng, M.S. Extension Graduate Assistant Mr. Archie Abrameit, Extension Specialist and Stiles Farm Manager Texas A&M AgriLife Extension Service

As the Extension Weed Science Program has done for most of the past 24 years, demonstrations were conducted in corn, sorghum and cotton to portray the performance of both traditional and new herbicide products. The primary and alarming issue facing Central Texas Blacklands farmers is the onset of glyphosate resistant common waterhemp pigweed (carelessweed). Two factors are in play, one being the shift in some areas of the Blacklands to common waterhemp pigweed that has displaced what was primarly Palmer amaranth pigweed infestations common in most field crops. The second factor is that we have documented and proved common waterhemp resistance to glyphosate herbicide in several areas of southeast and central Texas. This corroborates reports from farmers who have failed to control common waterhemp with glyphosate applications for the past 4-5 years. Armed with these facts, Texas A&M AgriLife Extension has been aggressive in promoting the use of soil-applied herbicides and postemergence herbicides in conjunction with the use of glyphosate. By introducing preplant and preemergence soil applied herbicides with different sites of action than glyphosate, farmers can help themselves prevent the onset of glyphosate resistance or manage it if it has already occurred on their farms. At the same time, they can prevent much of the harmful effects of earlyseason weed competition with juvenile crops.

In the corn herbicide demonstration (Table 1) several application timings were employed. What is important to note in this demonstration was that all treatments provided 95-100% pigweed control at the end of the season. Some differences in browntop panicum were noted between treatments. In the sorghum herbicide demonstration (Table 2), only one evaluation was performed on pigweed control provided by the new products, Warrant, Huskie, and Cadet. All provided 100% control at the July 18 rating date. In the cotton demonstration (Table 3), several preemergence and postemergence programs were evaluated, with pre applications showing 90-100% control of red sprangletop and 65-100% control of Palmer amaranth pigweed. Early post (EPOST) and later mid post (MPOST) applications varied between treatments.

Please remember to always read product labels as these labels are often updated with important information regarding their use. Some of the herbicides in this report were experimental at the time of this testing. Please consult the authors if you have any questions regarding these studies.

| Experiment #:     | PB13-03                  | Cro      | op:               | Corn                     |
|-------------------|--------------------------|----------|-------------------|--------------------------|
| Location:         | Stiles Farm              |          | op variety:       | P2088YHR                 |
| Experimental      | Randomized Com           |          | nd/Silt/Cla       |                          |
| design:           | Block                    |          | cent:             | , 17/38/45               |
| Plot size:        | 12.67' x 30'             | Pla      | nting Date        |                          |
| Number of reps:   | 3                        |          | tility:           | Good                     |
| Row width:        | 38"                      | pH       | •                 | 7.2                      |
| Soil type:        | Branyon Clay             | % (      | DM:               | 1.75                     |
|                   |                          |          |                   |                          |
| Application Code  | Α                        | В        |                   | С                        |
| Timing            | PRE                      | EPOS     | Т                 | PDIR                     |
| Date applied:     | 3-27-13                  | 4-30-2   | 13                | 5-14-13                  |
| Time:             | 6:15 PM                  | 1:00 F   | ٧M                | 10:30 AM                 |
| Air Temp. [°F]:   | 68°F                     | 78°F     | =                 | 78°F                     |
| Soil 4" Temp[°F]: | 64°F                     | 72°F     | =                 | 72°F                     |
| R. Humidity [%]:  | 34%                      | 56%      | ,<br>D            | 46%                      |
| Wind [mph]:       | S @ 7 mph                | S @ 5.5  | mph               | S @ 8 mph                |
| Cloud Cover:      | 75%                      | 100%     | 6                 | 100%                     |
| Dew Presence:     | No                       | No       |                   | No                       |
| Soil Surface:     | Dry                      | Dry      |                   | Dry                      |
| Soil Moisture:    | Excellent                | Goo      | d                 | Good                     |
| Sprayer Type:     | Backpack CO <sub>2</sub> | Backpacl | k CO <sub>2</sub> | Backpack CO <sub>2</sub> |
| Nozzle Size/Type: | 11003 DG                 | 11003    | DG                | 9504EVS/drop             |
|                   |                          |          |                   | nozzles                  |
| Boom Height:      | 19"                      | 19"      |                   | 15″                      |
| Nozzle Spacing:   | 19"                      | 19"      |                   | 15″                      |
| GPA/PSI:          | 15/32                    | 15/3     | 8                 | 15/30                    |
| Speed [MPH]:      | 3.0                      | 3.0      |                   | 3.0                      |
|                   |                          |          |                   |                          |
|                   | •                        | -        |                   | 6                        |

# Table 1. Corn Herbicide Demonstration Study

| Weed/Crop                   | A<br>(Circ (Density) | B<br>(Circ (Density)        | C<br>(Sing (Dangitu)           |
|-----------------------------|----------------------|-----------------------------|--------------------------------|
| Corn (ZEAMX)                | (Size/Density)       | <b>(Size/Density)</b><br>V5 | <b>(Size/Density)</b><br>V6-V7 |
| Browntop Panicum<br>(PANFA) |                      | 2-3"/ 1-3/ft <sup>2</sup>   | 2-5"/ 1-3/ft <sup>2</sup>      |

# **Corn Herbicide Demonstration**

| Pos | t Type                                                      |           |          |      |                    |                |        | W Weed       | W Weed       | W Weed       | W Weed       |
|-----|-------------------------------------------------------------|-----------|----------|------|--------------------|----------------|--------|--------------|--------------|--------------|--------------|
|     | t Code                                                      |           |          |      |                    |                |        | PANFA        | AMAPA        | PANFA        | AMAPA        |
|     | t Name                                                      |           |          |      |                    |                |        | Browntop pa> | Palmer amar> | Browntop pa> | Palmer amar> |
|     | ing Date                                                    |           |          |      |                    |                |        | 4/30/13      | 4/30/13      | 5/14/13      | 5/14/13      |
|     | ng Data Type                                                |           |          |      |                    |                |        | Control      | Control      | Control      | Control      |
|     | ng Unit                                                     |           |          |      |                    |                |        | Percent      | Percent      | Percent      | Percent      |
|     | Treatment                                                   | Form      | Form     |      | Rate               | Growth         | Appl   |              |              |              |              |
|     | Name                                                        | Conc      |          |      |                    | Stage          | Code   | 1            | 2            | 3            | 4            |
| 1   | Rimsulfuron (Realm Q 4 oz)                                  |           | WG       |      | oz wt/a            | EPOST          |        |              |              | 99.0         | 100.0        |
|     | Isoxadifen-ethyl (Realm Q 4 oz<br>Mesotrione (Realm Q 4 oz) |           | WG<br>WG |      | oz wt/a<br>oz wt/a | EPOST<br>EPOST |        |              |              |              |              |
|     | Abundit S                                                   |           | SL       |      | fl oz/a            | EPOST          |        |              |              |              |              |
|     | Ammonium Sulfate (AMS)                                      | 100       |          |      | lb/a               | EPOST          |        |              |              |              |              |
| 2   | Rimsulfuron (Realm Q 4 oz)                                  |           | WG       |      | oz wt/a            | EPOST          |        |              |              | 95.0         | 100.0        |
|     | Isoxadifen-ethyl (Realm Q 4 oz                              |           | WG       |      | oz wt/a            | EPOST          |        |              |              |              |              |
|     | Mesotrione (Realm Q 4 oz)<br>Abundit S                      |           | WG<br>SL |      | oz wt/a<br>fl oz/a | EPOST<br>EPOST |        |              |              |              |              |
|     | Atrazine 90 DF                                              |           | WG       |      | oz ai/a            | EPOST          |        |              |              |              |              |
|     | AMS                                                         | 100       |          | 2    | lb/a               | EPOST          | В      |              |              |              |              |
| 3   | Cinch ATZ                                                   | 5.5       |          | 0.75 |                    | PRE            | А      | 65.0         | 100.0        | 60.0         | 90.0         |
|     | Rimsulfuron (Realm Q 4 oz)                                  |           | WG       |      | oz wt/a            | EPOST<br>PDIR  |        |              |              |              |              |
|     | Isoxadifen-ethyl (Realm Q 4 oz<br>Mesotrione (Realm Q 4 oz) |           | WG<br>WG |      | oz wt/a<br>oz wt/a | PDIR           | C<br>C |              |              |              |              |
|     | Crop Oil (COC)                                              | 100       |          |      | % v/v              | PDIR           | č      |              |              |              |              |
|     | AMS                                                         | 100       |          |      | lb ai/a            | PDIR           | C      |              |              |              |              |
| 4   | Cinch ATZ                                                   | 5.5       | SC       | 0.75 | qt/a               | PRE            | А      | 65.0         | 100.0        | 60.0         | 100.0        |
|     | Rimsulfuron (Realm Q 4 oz)                                  | 25        | WG       | 1.2  | oz wt/a            | PDIR           | С      |              |              |              |              |
|     | Isoxadifen-ethyl (Realm Q 4 oz                              |           | WG       | 0.30 | oz wt/a            | PDIR           | С      |              |              |              |              |
|     | Mesotrione (Realm Q 4 oz)                                   |           | WG       |      | oz wt/a            | PDIR           | С      |              |              |              |              |
|     | Abundit S                                                   |           | SL       |      | fl oz/a            | PDIR           | С      |              |              |              |              |
|     | Ammonium Sulfate (AMS)                                      | 100       |          | 2    | lb/a               | PDIR           | С      |              |              |              |              |
| 5   | Rimsulfuron (Realm Q 4 oz)                                  | -         | WG       |      | oz wt/a            | PRE            | А      | 80.0         | 100.0        | 75.0         | 100.0        |
|     | Mesotrione (Realm Q 4 oz)                                   |           | WG       |      | oz wt/a            | PRE            | A      |              |              |              |              |
|     | Atrazine                                                    |           | SC       |      | qt/a               | PRE            | A      |              |              |              |              |
|     | Rimsulfuron (Realm Q 4 oz)                                  |           | WG       |      | oz wt/a            | PDIR           | С      |              |              |              |              |
|     | Isoxadifen-ethyl (Realm Q 4 oz                              |           | WG       |      | oz wt/a            | PDIR           | С      |              |              |              |              |
|     | Mesotrione (Realm Q 4 oz)                                   |           | WG       |      | oz wt/a            | PDIR           | C      |              |              |              |              |
|     | Abundit S                                                   | 4<br>100  | SL       |      | fl oz/a<br>Ib/a    | PDIR<br>PDIR   | C<br>C |              |              |              |              |
| 6   | Ammonium Sulfate (AMS)<br>Atrazine                          |           | SC       |      | qt/a               | PRE            | A      | 70.0         | 100.0        | 95.0         | 100.0        |
| 0   | Laudis                                                      | 4<br>5.25 |          |      | oz/a               | EPOST          |        | 70.0         | 100.0        | 95.0         | 100.0        |
|     | Roundup PowerMax                                            | 5.5       |          |      | oz/a               | EPOST          |        |              |              |              |              |
|     | MSO                                                         | 100       | -        |      | % v/v              | EPOST          |        |              |              |              |              |
|     | AMS                                                         | 100       |          |      | lb/100 gal         |                |        |              |              |              |              |
| 7   | Balance FLEXX                                               |           | SC       |      | fl oz/a            | PRE            | A      | 80.0         | 100.0        | 90.0         | 100.0        |
|     | Atrazine                                                    |           | SC       |      | qt/a               | PRE            | A      |              |              |              |              |
|     | Laudis                                                      | 5.25      |          |      | fl oz/a            | EPOST          |        |              |              |              |              |
|     | Roundup PowerMax                                            | 5.5       |          |      | fl oz/a            | EPOST          |        |              |              |              |              |
|     | AMS                                                         | 100       | GR       | 8.5  | lb/100 gal         | EPOST          | В      |              |              |              |              |
| 8   | Balance FLEXX                                               | 4         | SC       | 4    | fl oz/a            | PRE            | А      | 85.0         | 100.0        | 95.0         | 100.0        |
|     | Atrazine                                                    | 4         | SC       | 1    | qt/a               | PRE            | А      |              |              |              |              |
|     | Laudis                                                      | 5.25      | SC       | 3    | fl oz/a            | EPOST          | В      |              |              |              |              |
|     | Liberty                                                     | 2.34      |          |      | fl oz/a            | EPOST          |        |              |              |              |              |
|     | AMS                                                         | 100       |          |      | lb/a               | EPOST          |        |              |              |              |              |
| 9   | Zidua                                                       |           | WG       |      | oz wt/a            | PRE            | А      | 82.0         | 100.0        | 100.0        | 100.0        |
|     | Armezon                                                     | 2.8       |          |      | fl oz/a            | EPOST          |        |              |              |              |              |
|     | Aatrex                                                      |           | SC       |      | pt/a               | EPOST          |        |              |              |              |              |
|     | Roundup PowerMax                                            | 5.5       |          |      | fl oz/a            | EPOST          |        |              |              |              |              |
|     | MSO                                                         | 100       |          |      | % v/v              | EPOST          |        |              |              |              |              |
|     | AMS                                                         | 100       | GR       | 8.5  | lb/100 gal         | EPOST          | В      |              |              |              |              |

| Deat | Pest Type        | •    |      |      |              |        |      | W Weed                  | W Weed                  | W Weed                  | W Weed                  |
|------|------------------|------|------|------|--------------|--------|------|-------------------------|-------------------------|-------------------------|-------------------------|
|      | : Code<br>: Name |      |      |      |              |        |      | PANFA<br>Brownton no.   | AMAPA                   | PANFA<br>Brownton nov   | AMAPA                   |
|      | ng Date          |      |      |      |              |        |      | Browntop pa><br>4/30/13 | Palmer amar><br>4/30/13 | Browntop pa><br>5/14/13 | Palmer amar><br>5/14/13 |
|      | ng Data Type     |      |      |      |              |        |      | 4/30/13<br>Control      | 4/30/13<br>Control      | Control                 | Control                 |
|      | ng Unit          |      |      |      |              |        |      | Percent                 | Percent                 | Percent                 | Percent                 |
|      | Treatment        | Form | Form |      | Rate         | Growth | Appl | reicent                 | i eicent                | reicent                 | reicent                 |
| -    | Name             |      | Туре | Rate |              | Stage  | Code | 1                       | 2                       | 3                       | 4                       |
| -    | Verdict          | 5.57 | 21   |      | fl oz/a      | PRE    | A    | 90.0                    | 100.0                   | 100.0                   | 100.0                   |
| 10   | Status           |      | WG   |      | oz wt/a      | EPOST  |      | 00.0                    | 100.0                   | 100.0                   | 100.0                   |
|      | Roundup PowerMax | 5.5  | -    | -    | fl oz/a      | EPOST  |      |                         |                         |                         |                         |
|      | NIS              | 100  |      |      | % v/v        | EPOST  |      |                         |                         |                         |                         |
|      | AMS              | 100  |      |      | lb/100 gal   |        |      |                         |                         |                         |                         |
| 11   | Untreated        |      | •    | 0.0  | , gai        |        | _    | 0.0                     | 0.0                     | 0.0                     | 0.0                     |
| 12   | Anthem           | 2.15 | SE   | 9    | fl oz/a      | PRE    | А    | 90.0                    | 100.0                   | 95.0                    | 100.0                   |
|      | Roundup PowerMax | 5.5  |      |      | fl oz/a      | EPOST  | В    |                         |                         |                         |                         |
|      | AMS              | 100  |      |      | lb/100 gal   | EPOST  | В    |                         |                         |                         |                         |
| 13   | Anthem ATZ       | 4.5  |      |      | fl oz/a      | PRE    | А    | 80.0                    | 100.0                   | 95.0                    | 100.0                   |
|      | Roundup PowerMax | 5.5  |      |      | fl oz/a      | EPOST  | В    |                         |                         |                         |                         |
|      | AMS              | 100  |      | 8.5  | lb/100 gal   | EPOST  | В    |                         |                         |                         |                         |
| 14   | Atrazine         |      | SC   |      | qt/a         | EPOST  |      |                         |                         | 98.0                    | 100.0                   |
|      | Warrant          | 3    | CS   |      | pt/a         | EPOST  | В    |                         |                         |                         |                         |
|      | Roundup PowerMax | 5.5  |      |      | fl oz/a      | EPOST  |      |                         |                         |                         |                         |
| 15   | Warrant          | 3    | CS   | 4    | pt/a         | PRE    | А    | 90.0                    | 100.0                   | 95.0                    | 100.0                   |
|      | Atrazine         |      | SC   |      | qt/a         | PRE    | А    |                         |                         |                         |                         |
|      | Roundup PowerMax | 5.5  |      |      | ,<br>fl oz/a | EPOST  | В    |                         |                         |                         |                         |
| 16   | Bicep II Magnum  | 5.5  | SC   | 2.1  | qt/a         | PRE    | А    | 90.0                    | 100.0                   | 75.0                    | 100.0                   |
|      | Lexar            | 3.7  | CS   |      | qt/a         | PRE    | А    | 95.0                    | 100.0                   | 85.0                    | 100.0                   |
| 18   | Bicep II Magnum  | 5.5  | SC   |      | qt/a         | PRE    | А    | 90.0                    | 100.0                   | 98.0                    | 100.0                   |
|      | Halex GT         | 4.38 |      |      | ,<br>pt/a    | EPOST  | В    |                         |                         |                         |                         |
|      | Aatrex           | 4    | SC   |      | qt/a         | EPOST  | В    |                         |                         |                         |                         |
|      | NIS              | 100  | EC   |      | % v/v        | EPOST  | В    |                         |                         |                         |                         |
| 19   | Lexar            | 3.7  | CS   | 1.5  | qt/a         | PRE    | А    | 90.0                    | 100.0                   | 98.0                    | 100.0                   |
|      | Halex GT         | 4.38 | CS   |      | pt/a         | EPOST  | В    |                         |                         |                         |                         |
|      | Aatrex           | 4    | SC   | 1.0  | qt/a         | EPOST  | В    |                         |                         |                         |                         |
| 20   | Bicep II Magnum  | 5.5  | SC   | 2.1  | qt/a         | PRE    | А    | 90.0                    | 100.0                   | 95.0                    | 100.0                   |
|      | Touchdown Total  | 4.17 | SL   |      | fl oz/a      | EPOST  | В    |                         |                         |                         |                         |
|      | N-Pak (AMS)      | 100  | SL   | 1    | % v/v        | EPOST  | В    |                         |                         |                         |                         |
| 21   | Lexar            | 3.7  | CS   | 3.0  | qt/a         | PRE    | А    | 95.0                    | 100.0                   | 95.0                    | 100.0                   |
|      | Touchdown Total  | 4.17 | SL   | 24   | fl oz/a      | EPOST  | В    |                         |                         |                         |                         |
|      | N-Pak (AMS)      | 100  |      | 1    | % v/v        | EPOST  | В    |                         |                         |                         |                         |
| 22   | Untreated        |      |      |      |              |        |      | 0.0                     | 0.0                     | 0.0                     | 0.0                     |
| LSD  | (P=.05)          |      |      |      |              |        |      |                         |                         |                         |                         |
|      | idard Deviation  |      |      |      |              |        |      |                         |                         |                         |                         |
| CV   |                  |      |      |      |              |        |      |                         |                         |                         |                         |
| Bart | lett's X2        |      |      |      |              |        |      |                         |                         |                         |                         |
| P(Ba | artlett's X2)    |      |      |      |              |        |      |                         |                         |                         |                         |

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

|       | Туре                           |                   |                           |        |      | W Weed       | W Weed       | W Weed       | W Weed       |
|-------|--------------------------------|-------------------|---------------------------|--------|------|--------------|--------------|--------------|--------------|
|       | Code                           |                   |                           |        |      | PANFA        | AMAPA        | PANFA        | AMAPA        |
|       | Name                           |                   |                           |        |      | Browntop pa> | Palmer amar> | Browntop pa> | Palmer amar> |
|       | ng Date                        |                   |                           |        |      | 5/28/13      | 5/28/13      | 7/18/13      | 7/18/13      |
|       | ng Data Type                   |                   |                           |        |      | Control      | Control      | Control      | Contro       |
| Ratir | ng Unit                        |                   |                           |        |      | Percent      | Percent      | Percent      | Percent      |
|       | Treatment                      | Form Form         | Rate                      | Growth | Appl |              |              |              |              |
| No.   | Name                           | Conc Type         | Rate Unit                 | Stage  | Code | 5            | 6            | 7            | 8            |
| 1     | Rimsulfuron (Realm Q 4 oz)     | 25 WG             | 1.2 oz wt/a               | EPOST  | В    | 90.0         | 97.0         | 80.0         | 95.0         |
|       | Isoxadifen-ethyl (Realm Q 4 oz | 50 WG             | 0.30 oz wt/a              | EPOST  |      |              |              |              |              |
|       | Mesotrione (Realm Q 4 oz)      | 50 WG             | 2.5 oz wt/a               | EPOST  |      |              |              |              |              |
|       | Abundit S                      | 4 SL              | 32 fl oz/a                | EPOST  |      |              |              |              |              |
|       | Ammonium Sulfate (AMS)         | 100 GR            | 2 lb/a                    | EPOST  |      |              |              |              |              |
| 2     | Rimsulfuron (Realm Q 4 oz)     | 25 WG             | 1.2 oz wt/a               | EPOST  |      | 90.0         | 100.0        | 80.0         | 100.0        |
|       | Isoxadifen-ethyl (Realm Q 4 oz | 50 WG             | 0.30 oz wt/a              | EPOST  | В    |              |              |              |              |
|       | Mesotrione (Realm Q 4 oz)      | 50 WG             | 2.5 oz wt/a               | EPOST  | В    |              |              |              |              |
|       | Abundit S                      | 4 SL              | 32 fl oz/a                | EPOST  | В    |              |              |              |              |
|       | Atrazine 90 DF                 | 90 WG             | 16 oz ai/a                | EPOST  | В    |              |              |              |              |
|       | AMS                            | 100 GR            | 2 lb/a                    | EPOST  | В    |              |              |              |              |
|       | Cinch ATZ                      | 5.5 SC            | 0.75 qt/a                 | PRE    | А    | 68.0         | 95.0         | 65.0         | 100.0        |
|       | Rimsulfuron (Realm Q 4 oz)     | 25 WG             | 1.2 oz wt/a               | EPOST  | В    |              |              |              |              |
|       | Isoxadifen-ethyl (Realm Q 4 oz | 50 WG             | 0.30 oz wt/a              | PDIR   | С    |              |              |              |              |
|       | Mesotrione (Realm Q 4 oz)      | 50 WG             | 2.5 oz wt/a               | PDIR   | С    |              |              |              |              |
|       | Crop Oil (COC)                 | 100 EC            | 1 % v/v                   | PDIR   | С    |              |              |              |              |
|       | AMS                            | 100 GR            | 2 lb ai/a                 | PDIR   | С    |              |              |              |              |
| 4     | Cinch ATZ                      | 5.5 SC            | 0.75 qt/a                 | PRE    | А    | 95.0         | 98.0         | 85.0         | 100.0        |
|       | Rimsulfuron (Realm Q 4 oz)     | 25 WG             | 1.2 oz wt/a               | PDIR   | С    |              |              |              |              |
|       | Isoxadifen-ethyl (Realm Q 4 oz | 50 WG             | 0.30 oz wt/a              | PDIR   | С    |              |              |              |              |
|       | Mesotrione (Realm Q 4 oz)      | 50 WG             | 2.5 oz wt/a               | PDIR   | С    |              |              |              |              |
|       | Abundit S                      | 4 SL              | 32 fl oz/a                | PDIR   | С    |              |              |              |              |
|       | Ammonium Sulfate (AMS)         | 100 GR            | 2 lb/a                    | PDIR   | С    |              |              |              |              |
|       | Rimsulfuron (Realm Q 4 oz)     | 25 WG             | 1.0 oz wt/a               | PRE    | А    | 98.0         | 99.0         | 90.0         | 100.0        |
|       | Mesotrione (Realm Q 4 oz)      | 50 WG             | 4.5 oz wt/a               | PRE    | А    |              |              |              |              |
|       | Atrazine                       | 4 SC              | 1 qt/a                    | PRE    | А    |              |              |              |              |
|       | Rimsulfuron (Realm Q 4 oz)     | 25 WG             | 1.2 oz wt/a               | PDIR   | С    |              |              |              |              |
|       | Isoxadifen-ethyl (Realm Q 4 oz | 50 WG             | 0.30 oz wt/a              | PDIR   | С    |              |              |              |              |
|       | Mesotrione (Realm Q 4 oz)      | 50 WG             | 2.5 oz wt/a               | PDIR   | С    |              |              |              |              |
|       | Abundit S                      | 4 SL              | 32 fl oz/a                | PDIR   | С    |              |              |              |              |
|       | Ammonium Sulfate (AMS)         | 100 GR            | 2 lb/a                    | PDIR   | С    |              |              |              |              |
|       | Atrazine                       | 4 SC              | 1 qt/a                    | PRE    | А    | 95.0         | 100.0        | 75.0         | 100.0        |
|       | Laudis                         | 5.25 SC           | 3 oz/a                    | EPOST  | в    |              |              |              |              |
|       | Roundup PowerMax               | 5.5 SL            | 32 oz/a                   | EPOST  |      |              |              |              |              |
|       | MSO                            | 100 EC            | 1 % v/v                   | EPOST  |      |              |              |              |              |
|       | AMS                            | 100 GR            | 8.5 lb/100 gal            |        |      |              |              |              |              |
|       | Balance FLEXX                  | 4 SC              | 4 fl oz/a                 | PRE    | A    | 95.0         | 100.0        | 90.0         | 100.0        |
| '     | Atrazine                       | 4 SC              | 1 qt/a                    | PRE    | A    | 00.0         | 100.0        | 00.0         | 100.0        |
|       | Laudis                         | 5.25 SC           | 3 fl oz/a                 | EPOST  |      |              |              |              |              |
|       | Roundup PowerMax               | 5.5 SL            | 32 fl oz/a                | EPOST  |      |              |              |              |              |
|       | AMS                            | 100 GR            | 8.5 lb/100 gal            |        |      |              |              |              |              |
| 8     | Balance FLEXX                  | 4 SC              | 4 fl oz/a                 | PRE    | A    | 97.0         | 100.0        | 92.0         | 100.0        |
| 0     | Atrazine                       | 4 SC<br>4 SC      | 4 11 02/a<br>1 qt/a       | PRE    | A    | 51.0         | 100.0        | 92.0         | 100.0        |
|       | Laudis                         | 5.25 SC           | 3 fl oz/a                 | EPOST  |      |              |              |              |              |
|       | Liberty                        | 2.34 SL           | 22 fl oz/a                | EPOST  |      |              |              |              |              |
|       | AMS                            | 2.34 SL<br>100 GR | 3 lb/a                    | EPOST  |      |              |              |              |              |
| 0     | Zidua                          | 85 WG             | 3 ib/a<br>3 oz wt/a       | PRE    | A    | 98.0         | 100.0        | 95.0         | 100.0        |
|       | Armezon                        | 2.8 SC            | 3 oz wt/a<br>0.75 fl oz/a | EPOST  |      | 90.0         | 100.0        | 90.0         | 100.0        |
|       | Aatrex                         | 2.8 SC<br>4 SC    | 0.75 ii 02/a<br>1 pt/a    | EPOST  |      |              |              |              |              |
|       | Roundup PowerMax               | 4 SC<br>5.5 SL    | 22 fl oz/a                | EPOST  |      |              |              |              |              |
|       | •                              |                   |                           |        |      |              |              |              |              |
|       | MSO                            | 100 EC            | 1 % v/v                   | EPOST  |      |              |              |              |              |
|       | AMS                            | 100 GR            | 8.5 lb/100 gal            | EPU21  | D    |              |              |              |              |

| 10 Verdict         | 5.57 SC | 18 fl oz/a     | PRE   | А | 97.0 | 100.0 | 90.0 | 98.0  |
|--------------------|---------|----------------|-------|---|------|-------|------|-------|
| Status             | 56 WG   | 5 oz wt/a      | EPOST | В |      |       |      |       |
| Roundup PowerMax   | 5.5 SL  | 22 fl oz/a     | EPOST | В |      |       |      |       |
| NIS                | 100 EC  | 0.25 % v/v     | EPOST | В |      |       |      |       |
| AMS                | 100 GR  | 8.5 lb/100 gal | EPOST | В |      |       |      |       |
| 11 Untreated       |         |                |       |   | 0.0  | 0.0   | 0.0  | 0.0   |
| 12 Anthem          | 2.15 SE | 9 fl oz/a      | PRE   | А | 95.0 | 100.0 | 95.0 | 100.0 |
| Roundup PowerMax   | 5.5 SL  | 22 fl oz/a     | EPOST | В |      |       |      |       |
| AMS                | 100 GR  | 8.5 lb/100 gal |       | В |      |       |      |       |
| 13 Anthem ATZ      | 4.5 SE  | 36 fl oz/a     | PRE   | А | 97.0 | 100.0 | 90.0 | 100.0 |
| Roundup PowerMax   | 5.5 SL  | 22 fl oz/a     | EPOST | В |      |       |      |       |
| AMS                | 100 GR  | 8.5 lb/100 gal | EPOST | В |      |       |      |       |
| 14 Atrazine        | 4 SC    | 1 qt/a         | EPOST | В | 95.0 | 100.0 | 95.0 | 100.0 |
| Warrant            | 3 CS    | 4 pt/a         | EPOST | В |      |       |      |       |
| Roundup PowerMax   | 5.5 SL  | 32 fl oz/a     | EPOST | В |      |       |      |       |
| 15 Warrant         | 3 CS    | 4 pt/a         | PRE   | А | 97.0 | 100.0 | 98.0 | 100.0 |
| Atrazine           | 4 SC    | 1 qt/a         | PRE   | А |      |       |      |       |
| Roundup PowerMax   | 5.5 SL  | 32 fl oz/a     | EPOST | В |      |       |      |       |
| 16 Bicep II Magnum | 5.5 SC  | 2.1 qt/a       | PRE   | А | 82.0 | 100.0 | 75.0 | 100.0 |
| 17 Lexar           | 3.7 CS  | 3.0 qt/a       | PRE   | А | 80.0 | 100.0 | 85.0 | 100.0 |
| 18 Bicep II Magnum | 5.5 SC  | 1.3 qt/a       | PRE   | А | 97.0 | 100.0 | 90.0 | 100.0 |
| Halex GT           | 4.38 CS | 3.6 pt/a       | EPOST | В |      |       |      |       |
| Aatrex             | 4 SC    | 1.0 qt/a       | EPOST | В |      |       |      |       |
| NIS                | 100 EC  | 0.25 % v/v     | EPOST | В |      |       |      |       |
| 19 Lexar           | 3.7 CS  | 1.5 qt/a       | PRE   | А | 98.0 | 100.0 | 82.0 | 100.0 |
| Halex GT           | 4.38 CS | 3.6 pt/a       | EPOST | В |      |       |      |       |
| Aatrex             | 4 SC    | 1.0 qt/a       | EPOST | В |      |       |      |       |
| 20 Bicep II Magnum | 5.5 SC  | 2.1 qt/a       | PRE   | А | 95.0 | 100.0 | 85.0 | 100.0 |
| Touchdown Total    | 4.17 SL | 24 fl oz/a     | EPOST | В |      |       |      |       |
| N-Pak (AMS)        | 100 SL  | 1 % v/v        | EPOST | В |      |       |      |       |
| 21 Lexar           | 3.7 CS  | 3.0 qt/a       | PRE   | А | 97.0 | 100.0 | 90.0 | 100.0 |
| Touchdown Total    | 4.17 SL | 24 fl oz/a     | EPOST | В |      |       |      |       |
| N-Pak (AMS)        | 100 SL  | 1 % v/v        | EPOST | В |      |       |      |       |
| 22 Untreated       |         |                |       |   | 0.0  | 0.0   | 0.0  | 0.0   |
| LSD (P=.05)        |         |                |       |   |      |       |      |       |
| Standard Deviation |         |                |       |   |      |       |      |       |
| CV                 |         |                |       |   |      |       |      |       |
| Bartlett's X2      |         |                |       |   |      |       |      |       |
| P(Bartlett's X2)   |         |                |       |   |      |       |      |       |

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

| Experiment #:<br>Location:<br>Experimental<br>design:<br>Plot size:<br>Number of reps:<br>Row width:<br>Soil type: | PB13-05<br>Stiles<br>Randomized Compl<br>Block<br>12.67' x 100'<br>3<br>38"<br>Branyon Clay | Crop:<br>Crop variety:<br>ete Sand/Silt/Clay<br>Percent:<br>Planting Date:<br>Fertility:<br>pH:<br>% OM: | Corn<br>DKS-5367<br>17/38/45<br>3-27-13<br>Good<br>7.2<br>1.75 |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Application Code                                                                                                   | A                                                                                           | B                                                                                                        |                                                                |
| Timing<br>Date applied:                                                                                            | PRE<br>3-27-13                                                                              | POST<br>5-24-13                                                                                          |                                                                |
| Time:                                                                                                              | 6:15 PM                                                                                     | 3:00 PM                                                                                                  |                                                                |
| Air Temp. [°F]:                                                                                                    | 68°F                                                                                        | 78°F                                                                                                     |                                                                |
| Soil 4" Temp[°F]:                                                                                                  | 64°F                                                                                        | 72°F                                                                                                     |                                                                |
| R. Humidity [%]:                                                                                                   | 34%                                                                                         | 56%                                                                                                      |                                                                |
| Wind [mph]:                                                                                                        | S @ 7 mph                                                                                   | S @ 5.5 mph                                                                                              |                                                                |
| Cloud Cover:                                                                                                       | 75%                                                                                         | 100%                                                                                                     |                                                                |
| <b>Dew Presence:</b>                                                                                               | No                                                                                          | No                                                                                                       |                                                                |
| Soil Surface:                                                                                                      | Dry                                                                                         | Dry                                                                                                      |                                                                |
| Soil Moisture:                                                                                                     | Excellent                                                                                   | Good                                                                                                     |                                                                |
| Sprayer Type:                                                                                                      | Backpack $CO_2$                                                                             | Backpack CO <sub>2</sub>                                                                                 |                                                                |
| Nozzle Size/Type:                                                                                                  | 11003 DG                                                                                    | 11003 DG                                                                                                 |                                                                |
| Boom Height:                                                                                                       | 19"                                                                                         | 19"                                                                                                      |                                                                |
| Nozzle Spacing:                                                                                                    | 19"                                                                                         | 19"                                                                                                      |                                                                |
| GPA/PSI:                                                                                                           | 15/32                                                                                       | 15/38                                                                                                    |                                                                |
| Speed [MPH]:                                                                                                       | 3.0                                                                                         | 3.0                                                                                                      |                                                                |
| Weed/Crop<br>Palmer Amaranth                                                                                       | A<br>(Size/Density)                                                                         | B<br>(Size/Density)<br>3-5"/ 1/ft <sup>2</sup>                                                           |                                                                |
| (AMAPA)                                                                                                            |                                                                                             |                                                                                                          |                                                                |

# Table 2. Sorghum Herbicide Demonstration

# Texas A&M AgriLife Extension Service

#### Sorghum Herbicide Demonstration

Trial ID: PB13-05 Location: Stiles Farm Protocol ID: PB13-05 Study Director: Investigator: Dr. Paul A. Baumann

| Pest CodeAMAPAPest NameAmageRating DateTypeRating Data TypeFormRating UnitFormTrtTreatmentNo.NameConcTypeRateConcTypeRateUnitStageCode11Warrant3CS4pt/aPREAAMS212Atrazine4SC1gt/aWarrant3CS4pt/aPOSTBAMS21SG1gt/aPREA100.0Warrant3CS4pt/aPOSTBAMS21SG1b/aPOSTBAMS21SG1b/aPOSTBAMS21SG1b/aPOSTBAMS21SG1b/aPOSTBAMS21SG1b/aPOSTBAMS21SG1b/aPOSTBAMS100C0.25% v/vPOSTBA100.0A100C0.25<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                |      |      |      |         |        |      |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|------|------|------|---------|--------|------|--------------|
| Pest Name<br>Rating DatePalmer amary<br>7/18/13Rating Data Type<br>Rating UnitFormFormRate<br>ConcGrowthAppl<br>ApplNo.NameConcType<br>ConcRateGrowthApplNo.NameConcTypeRateUnitStageCode1Warrant3CS4pt/aPREA100.0Huskie2.06SL16fl oz/aPOSTB2Atrazine4SC1qt/aPREA100.0Warrant3CS4pt/aPOSTB2Atrazine4SC1qt/aPREA100.0Warrant3CS4pt/aPOSTB3Dual Magnum7.62EC1pt/aPREA100.0Cadet2EC0.90fl oz/aPOSTB3Dual Magnum7.62EC1.33pt/aPREA100.0Aim2EC0.50fl oz/aPOSTB4Dual Magnum7.62EC1.67pt/aPREA100.0Aim2EC1.67pt/aPREA100.0Aim2EC1.67pt/aPREA100.0Aim2EC1.67pt/aPREA100.0Aim2EC1.67pt/aPREA100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                |      |      |      |         |        |      | W Weed       |
| Rating Date<br>Rating Data TypeT/18/13<br>Control<br>PercentRating UnitFormFormRate<br>ConcGrowthAppl<br>ApplNo.NameConcTypeRateUnitStageCode11Warrant3CS4pt/aPREA100.0Huskie2.06SL16fl oz/aPOSTB2Atrazine4SC1qt/aPREA100.0Warrant3CS4pt/aPOSTB100.0Warrant3CS4pt/aPOSTB100.0Warrant3CS4pt/aPOSTB100.0Warrant3CS4pt/aPOSTB100.0Warrant3CS4pt/aPOSTB100.03Dual Magnum7.62EC1pt/aPREA100.0Cadet2EC0.00fl oz/aPOSTB100.0Aim2EC1.33pt/aPREA100.0Aim2EC1.67pt/aPREA100.0Aim2EC1.67pt/aPREA100.0Aim2.1SG1lb/aPOSTB100.05Dual Magnum7.62EC1.33pt/aPREA100.0GLiskie2.06SL1.6fl oz/a <td>Pest</td> <td>Code</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AMAPA</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pest | Code           |      |      |      |         |        |      | AMAPA        |
| Rating Data TypeControl<br>PercentRating UnitFormFormRateGrowthApplTrtTreatmentFormFormRateUnitStageCode11Warrant3CS4pt/aPREA100.0Huskie2.06SL16fl oz/aPOSTB100.0AMS21SG1Ib/aPOSTB100.02Atrazine4SC1qt/aPREA100.0Warrant3CS4pt/aPOSTB100.0100.0Warrant3CS4pt/aPOSTB100.0Marrant3CS4pt/aPOSTB100.0AMS21SG1Ib/aPOSTB100.0AMS21SG1b/aPOSTB100.0Cadet2EC0.90fl oz/aPOSTB100.0AIMS100EC0.25% v/vPOSTB100.0Aim2EC1.33pt/aPREA100.0Aim2EC1.67pt/aPREA100.0Aim2.06SL1.6fl oz/aPOSTB100.0Aim2.06SL1.6fl oz/aPOSTB100.0AMS21SG1Ib/aPOSTB100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pest | Name           |      |      |      |         |        |      | Palmer amar> |
| Rating Unit         Percent           Trt         Treatment         Form         Form         Rate         Growth         Appl           No.         Name         Conc         Type         Rate         Unit         Stage         Code         1           1         Warrant         3         CS         4         pt/a         PRE         A         100.0           Huskie         2.06         SL         16         fl oz/a         POST         B         100.0           2         Atrazine         4         SC         1         qt/a         PRE         A         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           AMS         21         SG         1         Ib/a         POST         B         100.0           Cadet         2         EC         0.90         fl oz/a         POST         B         100.0           Aim         2         EC         0.25         % v/v         POST         B         100.0           Aim                                                                                                                                                                                          | Rati | ng Date        |      |      |      |         |        |      | 7/18/13      |
| Trt         Treatment         Form         Form         Rate         Growth         Appl           No.         Name         Conc         Type         Rate         Unit         Stage         Code         1           1         Warrant         3         CS         4         pt/a         PRE         A         100.0           Huskie         2.06         SL         16         fl oz/a         POST         B         100.0           AMS         21         SG         1         lb/a         POST         B         100.0           Warrant         3         CS         4         pt/a         PRE         A         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           AMS         21         SG         1         lb/a         POST         B         100.0           Cadet         2         EC         0.90         fl oz/a         POST         B         100.0           Aim         2         EC         0.50         fl oz/a <t< td=""><td>Rati</td><td>ng Data Type</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Control</td></t<>                                                                    | Rati | ng Data Type   |      |      |      |         |        |      | Control      |
| No.         Name         Conc         Type         Rate         Unit         Stage         Code         1           1         Warrant         3         CS         4         pt/a         PRE         A         100.0           Huskie         2.06         SL         16         fl oz/a         POST         B         100.0           AMS         21         SG         1         tb/a         POST         B         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           AMS         21         SG         1         bt/a         POST         B         100.0         Cadet         2         EC         0.90         fl oz/a         POST         B         100.0           AMS         100         EC         0.25         % v/v         POST         B         100.0         Aim         2         EC         0.50         fl oz/a         POST         B<                                                                                                                                                                     | Rati | ng Unit        |      |      |      |         |        |      | Percent      |
| 1 Warrant       3 CS       4 pt/a       PRE       A       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         AMS       21 SG       1 lb/a       POST       B       100.0         2 Atrazine       4 SC       1 qt/a       PRE       A       100.0         Warrant       3 CS       4 pt/a       POST       B       100.0         Gadet       2.06 SL       16 fl oz/a       POST       B       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         Aim       2 EC       0.90 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       1.67 pt/a       PRE       A       100.0         Huskie <td>Trt</td> <td>Treatment</td> <td>Form</td> <td>Form</td> <td></td> <td>Rate</td> <td>Growth</td> <td>Appl</td> <td></td>                                                                                                                       | Trt  | Treatment      | Form | Form |      | Rate    | Growth | Appl |              |
| Huskie         2.06         SL         16         fl oz/a         POST         B           AMS         21         SG         1         Ib/a         POST         B           2         Atrazine         4         SC         1         qt/a         PRE         A         100.0           Warrant         3         CS         4         pt/a         POST         B         100.0           Marrant         3         CS         4         pt/a         POST         B         100.0           Marrant         3         CS         4         pt/a         POST         B         100.0           AMS         21         SG         1         bt/a         POST         B         100.0           Cadet         2         EC         0.90         fl oz/a         POST         B         100.0           Cadet         2         EC         0.90         fl oz/a         POST         B         100.0           A         Dual Magnum         7.62         EC         1.33         pt/a         PRE         A         100.0           Aim         2         EC         0.50         fl oz/a         POST         B <td>No.</td> <td>Name</td> <td>Conc</td> <td>Туре</td> <td>Rate</td> <td>Unit</td> <td>Stage</td> <td>Code</td> <td>1</td>                                                              | No.  | Name           | Conc | Туре | Rate | Unit    | Stage  | Code | 1            |
| AMS       21 SG       1 Ib/a       POST       B         2 Atrazine       4 SC       1 qt/a       PRE       A       100.0         Warrant       3 CS       4 pt/a       POST       B       100.0         Warrant       3 CS       4 pt/a       POST       B       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         AMS       21 SG       1 b/a       POST       B       100.0         Cadet       2 EC       1 pt/a       PRE       A       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         Aim       100 EC       0.25 % v/v       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         S       100 EC       0.25 % v/v       POST       B       100.0         S       100 EC       0.25 % v/v       POST       B       100.0         S       100 EC       0.25 % v/v       POST       B       100.0         G       Dual Magnum                                                                                                                                                                                                                                                         | 1    | Warrant        | 3    | CS   | 4    | pt/a    | PRE    | А    | 100.0        |
| 2 Atrazine       4 SC       1 qt/a       PRE       A       100.0         Warrant       3 CS       4 pt/a       POST       B       100.0         Huskie       2.06       SL       16 fl oz/a       POST       B         AMS       21       SG       1 lb/a       POST       B         3 Dual Magnum       7.62       EC       1 pt/a       PRE       A       100.0         Cadet       2       EC       0.90 fl oz/a       POST       B       100.0         Cadet       2       EC       0.90 fl oz/a       POST       B       100.0         A Dual Magnum       7.62       EC       1.33 pt/a       PRE       A       100.0         Aim       2       EC       0.50 fl oz/a       POST       B       100.0         4       Dual Magnum       7.62       EC       1.33 pt/a       PRE       A       100.0         Aim       2       EC       0.50 fl oz/a       POST       B       100.0       100.0         5       Dual Magnum       7.62       EC       1.67 pt/a       PRE       A       100.0         Huskie       2.06       SL       16 fl oz/a       POST <td></td> <td>Huskie</td> <td>2.06</td> <td>SL</td> <td>16</td> <td>fl oz/a</td> <td>POST</td> <td>В</td> <td></td>                                                                                                                        |      | Huskie         | 2.06 | SL   | 16   | fl oz/a | POST   | В    |              |
| Warrant       3 CS       4 pt/a       POST       B         Huskie       2.06 SL       16 fl oz/a       POST       B         AMS       21 SG       1 lb/a       POST       B         3 Dual Magnum       7.62 EC       1 pt/a       PRE       A       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         A Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         5 Dual Magnum       7.62 EC       1.67 pt/a       PRE       A       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         5 Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       0.0         6 Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         7 Cinch ATZ </td <td></td> <td>AMS</td> <td>21</td> <td>SG</td> <td>1</td> <td>lb/a</td> <td>POST</td> <td>В</td> <td></td>                                                                                                      |      | AMS            | 21   | SG   | 1    | lb/a    | POST   | В    |              |
| Huskie         2.06         SL         16         fl oz/a         POST         B           AMS         21         SG         1         Ib/a         POST         B           3         Dual Magnum         7.62         EC         1         pt/a         PRE         A         100.0           Cadet         2         EC         0.90         fl oz/a         POST         B         100.0           Cadet         2         EC         0.90         fl oz/a         POST         B         100.0           Adman         100         EC         0.25         % v/v         POST         B         100.0           Aim         2         EC         0.50         fl oz/a         POST         B         100.0           Aim         2         EC         0.50         fl oz/a         POST         B         100.0           S         Dual Magnum         7.62         EC         1.67         pt/a         PRE         A         100.0           Huskie         2.06         SL         16         fl oz/a         POST         B         4         100.0         100.0         100.0         100.0         100.0         100.0                                                                                                                                                                         | 2    | Atrazine       | 4    | SC   |      | •       | PRE    | А    | 100.0        |
| AMS       21 SG       1 Ib/a       POST       B         3 Dual Magnum       7.62 EC       1 pt/a       PRE       A       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         Almostop       100 EC       0.25 % v/v       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         S Dual Magnum       7.62 EC       1.67 pt/a       PRE       A       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       4       100.0         G Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         7 Cinch ATZ       5.5 EC       1.6 pt/a       PRE       A       100.0         8 Untreated       C       0.0         LSD (P=.05)                                                                                                                                                                                                                                     |      | Warrant        | 3    | CS   | 4    | pt/a    | POST   | В    |              |
| 3 Dual Magnum       7.62 EC       1 pt/a       PRE       A       100.0         Cadet       2 EC       0.90 fl oz/a       POST       B       100.0         NIS       100 EC       0.25 % v/v       POST       B       100.0         4 Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         S Dual Magnum       7.62 EC       1.67 pt/a       PRE       A       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         6 Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         7 Cinch ATZ       5.5 EC       1.6 pt/a       PRE       A       100.0         8 Untreated       O.0         LSD (P=.05)       S         Standard Deviation       C         CV <td></td> <td>Huskie</td> <td>2.06</td> <td>SL</td> <td>16</td> <td>fl oz/a</td> <td>POST</td> <td>В</td> <td></td>                                                                                                                             |      | Huskie         | 2.06 | SL   | 16   | fl oz/a | POST   | В    |              |
| Cadet       2 EC       0.90 fl oz/a       POST       B         NIS       100 EC       0.25 % v/v       POST       B         4 Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         S Dual Magnum       7.62 EC       1.67 pt/a       PRE       A       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         G Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         7 Cinch ATZ       5.5 EC       1.6 pt/a       PRE       A       100.0         8 Untreated       Unutreated       0.0       .       .       .       .         CV       Standard Deviation       .       .       .       .       .         Bartlett's X2       .       .       .       .       .       .<                                                                                                                                                                                                                              |      | AMS            | 21   | SG   | 1    | lb/a    | POST   | В    |              |
| NIS         100 EC         0.25 % v/v         POST         B           4 Dual Magnum         7.62 EC         1.33 pt/a         PRE         A         100.0           Aim         2 EC         0.50 fl oz/a         POST         B         100.0           Aim         2 EC         0.50 fl oz/a         POST         B         100.0           NIS         100 EC         0.25 % v/v         POST         B         100.0           5 Dual Magnum         7.62 EC         1.67 pt/a         PRE         A         100.0           Huskie         2.06 SL         16 fl oz/a         POST         B         100.0           6 Dual Magnum         7.62 EC         1.33 pt/a         PRE         A         100.0           7 Cinch ATZ         5.5 EC         1.6 pt/a         PRE         A         100.0           8 Untreated         USD (P=.05)           Standard Deviation         .           CV         Standard Deviation           Bartlett's X2         .                                                                                                                                                                                                                                                                                                                                         | 3    | Dual Magnum    | 7.62 | EC   | 1    | pt/a    | PRE    | А    | 100.0        |
| 4 Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         Aim       2 EC       0.50 fl oz/a       POST       B       100.0         NIS       100 EC       0.25 % v/v       POST       B       100.0         5 Dual Magnum       7.62 EC       1.67 pt/a       PRE       A       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         Huskie       2.06 SL       16 fl oz/a       POST       B       100.0         6 Dual Magnum       7.62 EC       1.33 pt/a       PRE       A       100.0         7 Cinch ATZ       5.5 EC       1.6 pt/a       PRE       A       100.0         8 Untreated       0.0       0.0       .       .       .       .         CV       Standard Deviation       .       .       .       .       .         Bartlett's X2       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Cadet          | 2    | EC   | 0.90 | fl oz/a | POST   | В    |              |
| Aim         2         EC         0.50         fl oz/a         POST         B           NIS         100         EC         0.25         % v/v         POST         B           5         Dual Magnum         7.62         EC         1.67         pt/a         PRE         A         100.0           Huskie         2.06         SL         16         fl oz/a         POST         B           AMS         21         SG         1         Ib/a         POST         B           6         Dual Magnum         7.62         EC         1.33         pt/a         PRE         A         100.0           7         Cinch ATZ         5.5         EC         1.6         pt/a         PRE         A         100.0           8         Untreated         UNIC         0.0           LSD (P=.05)         Standard Deviation           CV         Standard Deviation           CV         Stantlett's X2                                                                                                                                                                                                                                                                                                                                                                                                          |      | NIS            | 100  | EC   | 0.25 | % v/v   | POST   | В    |              |
| NIS         100 EC         0.25 % v/v         POST         B           5 Dual Magnum         7.62 EC         1.67 pt/a         PRE         A         100.0           Huskie         2.06 SL         16 fl oz/a         POST         B         100.0           AMS         21 SG         1 lb/a         POST         B         100.0           6 Dual Magnum         7.62 EC         1.33 pt/a         PRE         A         100.0           7 Cinch ATZ         5.5 EC         1.6 pt/a         PRE         A         100.0           8 Untreated         UNITREATED           LSD (P=.05)         Standard Deviation           CV         Stantlett's X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4    | Dual Magnum    | 7.62 | EC   | 1.33 | pt/a    | PRE    | А    | 100.0        |
| 5       Dual Magnum       7.62       EC       1.67       pt/a       PRE       A       100.0         Huskie       2.06       SL       16       fl oz/a       POST       B         AMS       21       SG       1       lb/a       POST       B         6       Dual Magnum       7.62       EC       1.33       pt/a       PRE       A       100.0         7       Cinch ATZ       5.5       EC       1.6       pt/a       PRE       A       100.0         8       Untreated       0.0       0.0       LSD (P=.05)       .       .       .       .         Standard Deviation       CV       .       .       .       .       .       .         Bartlett's X2       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Aim            | 2    | EC   | 0.50 | fl oz/a | POST   | В    |              |
| Huskie         2.06         SL         16         fl oz/a         POST         B           AMS         21         SG         1         Ib/a         POST         B           6         Dual Magnum         7.62         EC         1.33         pt/a         PRE         A         100.0           7         Cinch ATZ         5.5         EC         1.6         pt/a         PRE         A         100.0           8         Untreated         COULT         0.0           LSD (P=.05)         Standard Deviation           CV         CV         Stantlett's X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | NIS            | 100  | EC   | 0.25 | % v/v   | POST   | В    |              |
| AMS         21 SG         1 Ib/a         POST         B           6 Dual Magnum         7.62 EC         1.33 pt/a         PRE         A         100.0           7 Cinch ATZ         5.5 EC         1.6 pt/a         PRE         A         100.0           8 Untreated         0.0         0.0         0.0         0.0         0.0           LSD (P=.05)         Standard Deviation         .         .         .         .           CV         .         .         .         .         .           Bartlett's X2         .         .         .         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5    | Dual Magnum    | 7.62 | EC   | 1.67 | pt/a    | PRE    | А    | 100.0        |
| 6 Dual Magnum         7.62 EC         1.33 pt/a         PRE         A         100.0           7 Cinch ATZ         5.5 EC         1.6 pt/a         PRE         A         100.0           8 Untreated         0.0         0.0         0.0         0.0         0.0           LSD (P=.05)         .         .         .         .         .           CV         .         .         .         .         .           Bartlett's X2         .         .         .         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | Huskie         | 2.06 | SL   | 16   | fl oz/a | POST   | В    |              |
| 7 Cinch ATZ         5.5 EC         1.6 pt/a         PRE         A         100.0           8 Untreated         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td></td> <td>AMS</td> <td>21</td> <td>SG</td> <td></td> <td></td> <td>POST</td> <td>В</td> <td></td> |      | AMS            | 21   | SG   |      |         | POST   | В    |              |
| 8 Untreated     0.0       LSD (P=.05)     .       Standard Deviation     .       CV     .       Bartlett's X2     .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6    | Dual Magnum    | 7.62 | EC   | 1.33 | pt/a    | PRE    | А    | 100.0        |
| LSD (P=.05) .<br>Standard Deviation .<br>CV .<br>Bartlett's X2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7    | Cinch ATZ      | 5.5  | EC   | 1.6  | pt/a    | PRE    | А    | 100.0        |
| Standard Deviation     .       CV     .       Bartlett's X2     .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8    | Untreated      |      |      |      |         |        |      | 0.0          |
| CV .<br>Bartlett's X2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | . ,            |      |      |      |         |        |      |              |
| Bartlett's X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stan | dard Deviation |      |      |      |         |        |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CV   |                |      |      |      |         |        |      |              |
| P(Bartlett's X2) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bart | lett's X2      |      |      |      |         |        |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P(Ba | artlett's X2)  |      |      |      |         |        |      |              |

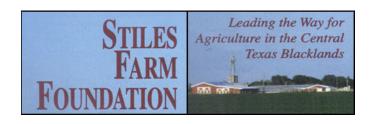
Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

| Experiment #:<br>Location:<br>Experimental<br>design:<br>Plot size:<br>Number of reps:<br>Row width:<br>Soil type: | PB13-21<br>Stiles Farm<br>Randomized Comp<br>Block<br>12.67' x 100'<br>1<br>38"<br>Branyon Clay | Crop:<br>Crop varie<br>olete Sand/Silt/<br>Percent:<br>Planting D<br>Fertility:<br>pH:<br>% OM: | Clay<br>17/38/45                              |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Application Code                                                                                                   | A<br>PRE                                                                                        | <b>B</b><br>EPOST                                                                               | C<br>MPOST                                    |  |
| Timing<br>Date applied:                                                                                            | 4-29-13                                                                                         | 5-24-13                                                                                         | 6-04-13                                       |  |
| Time:                                                                                                              | 3:00 PM                                                                                         | 3:00 PM                                                                                         | 4:00 PM                                       |  |
| Air Temp. [°F]:                                                                                                    | 83°F                                                                                            | 84°F                                                                                            | 93°F                                          |  |
| Soil 4" Temp[°F]:                                                                                                  | 78°F                                                                                            | 86°F                                                                                            | 85°F                                          |  |
| R. Humidity [%]:                                                                                                   | 46%                                                                                             | 54%                                                                                             | 38%                                           |  |
| Wind [mph]:                                                                                                        | SE @ 5 mph                                                                                      | W @ 6 mph                                                                                       | SE @ 3 mph                                    |  |
| Cloud Cover:                                                                                                       | 20%                                                                                             | 90%                                                                                             | Clear                                         |  |
| Dew Presence:                                                                                                      | No                                                                                              | No                                                                                              | No                                            |  |
| Soil Surface:                                                                                                      | Dry                                                                                             | Dry                                                                                             | Dry                                           |  |
| Soil Moisture:                                                                                                     | Good                                                                                            | Good                                                                                            | Excellent                                     |  |
| Sprayer Type:                                                                                                      | CO <sub>2</sub> Backpack                                                                        | CO <sub>2</sub> Backpack                                                                        | CO <sub>2</sub> Backpack                      |  |
| Nozzle Size/Type:                                                                                                  | 11003 DG                                                                                        | 11003 DG                                                                                        | 11003 DG                                      |  |
| Boom Height:                                                                                                       | 19"                                                                                             | 19"                                                                                             | 19"                                           |  |
| Nozzle Spacing:                                                                                                    | 19"                                                                                             | 19"                                                                                             | 19"                                           |  |
| GPA/PSI:                                                                                                           | 15/38                                                                                           | 15/38                                                                                           | 15/38                                         |  |
| Speed [MPH]:                                                                                                       | 3.0                                                                                             | 3.0                                                                                             | 3.0                                           |  |
| Weed/Crop                                                                                                          | А                                                                                               | В                                                                                               | С                                             |  |
|                                                                                                                    | (Size/Density)                                                                                  | (Size/Density)                                                                                  | (Size/Density)                                |  |
| Cotton (GOSHI)                                                                                                     |                                                                                                 | 4 leaf                                                                                          | 4-6 leaf                                      |  |
| Palmer Amaranth<br>(AMAPA)<br>Red Sprangletop<br>(LEFFI)                                                           |                                                                                                 | 2-3"/ 3-5/ft <sup>2</sup>                                                                       | 4-24"(avg<br>15")/1-5/ft <sup>2</sup><br>4-8" |  |

# Table 3. Cotton Herbicide Demonstration

# Texas A&M AgriLife Extension Service


Cotton Herbicide Demonstration

| Trial ID: PB13-21     |                 |      |      |      | Protocol ID: PB13-21 |          |       |               |              |  |
|-----------------------|-----------------|------|------|------|----------------------|----------|-------|---------------|--------------|--|
| Location: Stiles Farm |                 |      |      |      | Study Director:      |          |       |               |              |  |
|                       |                 |      |      |      | Ir                   | nvestiga | ator: | Dr. Paul A. E | Baumann      |  |
| Pest Ty               | 100             |      |      |      |                      |          |       | W Weed        | W Weed       |  |
| Pest Co               |                 |      |      |      |                      |          |       | AMAPA         | LEFFI        |  |
| Pest Na               |                 |      |      |      |                      |          |       | Palmer amar>  | Red sprangl> |  |
| Rating                |                 |      |      |      |                      |          |       | 7/18/13       | 7/18/13      |  |
| -                     | Data Type       |      |      |      |                      |          |       | Control       | Control      |  |
| Rating                |                 |      |      |      |                      |          |       | Percent       | Percent      |  |
|                       | reatment        | Form | Form |      | Rate                 | Growth   | Appl  |               |              |  |
| No. Na                |                 | Conc | Туре | Rate | Unit                 | Stage    | Code  | 1             | 2            |  |
| 1 Ca                  | aparol          |      | SC   |      | pt/a                 | PRE      | А     | 99.0          | 100.0        |  |
| 2 D                   | ual Magnum      | 7.62 | EC   | 1    | pt/a                 | PRE      | А     | 100.0         | 100.0        |  |
| R                     | eflex           | 2    | SL   | 1    | pt/a                 | PRE      | А     |               |              |  |
| 3 Ca                  | aparol          | 4    | SC   | 1    | pt/a                 | PRE      | А     | 100.0         | 90.0         |  |
| R                     | eflex           | 2    | SL   | 1    | pt/a                 | PRE      | А     |               |              |  |
| 4 Pi                  | refix           | 5.29 | EC   | 2    | pt/a                 | PRE      | А     | 100.0         | 100.0        |  |
| 5 St                  | taple LX        | 3.2  | LX   | 1.7  | fl oz/a              | PRE      | А     | 65.0          | 90.0         |  |
| 6 D                   | ual Magnum      | 7.62 | EC   | 1.33 | pt/a                 | PRE      | А     | 96.0          | 100.0        |  |
| _                     | ntreated        |      |      |      |                      |          |       | 0.0           | 0.0          |  |
| 8 R                   | oundup PowerMax | 5.5  |      | 22   | fl oz/a              | EPOST    | В     | 85.0          | 90.0         |  |
|                       | rowl H2O        |      | CS   |      | pt/a                 | EPOST    |       |               |              |  |
|                       | oundup PowerMax | 5.5  | -    |      |                      | MPOST    | С     |               |              |  |
|                       | berty           | 2.34 | -    | -    |                      | EPOST    | В     | 75.0          | 80.0         |  |
|                       | rowl H2O        |      | CS   |      | pt/a                 | EPOST    | В     |               |              |  |
|                       | oundup PowerMax | 5.5  | -    |      |                      | EPOST    | В     | 70.0          | 0.0          |  |
| 11 Li                 | ,               | 2.34 | -    | -    |                      | EPOST    | В     | 65.0          | 60.0         |  |
|                       | raxion          | 4.17 | -    |      |                      | MPOST    | С     | 75.0          | 75.0         |  |
|                       | raxion          | 4.17 |      |      | fl oz/a              | MPOST    | -     | 95.0          | 85.0         |  |
|                       | oundup PowerMax | 5.5  |      |      | fl oz/a              | MPOST    | С     | 100.0         | 90.0         |  |
|                       | oundup PowerMax | 5.5  | SL   | 32   | fl oz/a              | MPOST    | С     | 88.0          | 80.0         |  |
|                       | ntreated        |      |      |      |                      |          |       | 0.0           | 0.0          |  |
| LSD (P                | ,               |      |      |      |                      |          |       |               |              |  |
|                       | rd Deviation    |      |      |      |                      |          |       |               |              |  |
| CV                    |                 |      |      |      |                      |          |       | •             |              |  |
| Bartlett              |                 |      |      |      |                      |          |       | •             |              |  |
| P(Barti               | ett's X2)       |      |      |      |                      |          |       |               |              |  |

Means followed by same letter do not significantly differ (P=.05, Duncan's New MRT)

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

Produced by Soil & Crop Sciences Additional publications may be viewed at: **soilcrop.tamu.edu** 



The information contained herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by Texas AgriLife Extension Service and Texas A&M University is implied.

Educational programs of the Texas A&M AgriLife Extension Service are open to all people without regard to race, color, sex, religion, national origin, age, disability, genetic information, or veteran status.